Applied Research Project to Improve Alpaca Quilts and Textiles Through Analysis of Parameters Affecting Raw Fibre Production

Sponsor: National Research Council Canada, Industrial Research Assistance Program Grantee: Custom Woolen Mills, Fen Roessingh, owner Sub-contractor: Natural Fibre Centre and Testing Laboratory, Olds College School of Innovation

FINAL REPORT

The effects of age, location, nutrition, and season on body weight, fiber production, and fiber quality characteristics of penned alpaca males

Principal Investigator: Ruth Elvestad, Project Leader, Natural Fibre Centre, Olds College, Alberta, Canada

Co-investigator: Chris Lupton, Professor, Texas A&M University Agricultural Research and Extension Center, San Angelo, U.S.A.

SUMMARY

Thirty-six yearling alpaca males (offspring of 9 sires) were identified for this study to determine the effects of age, location, nutrition, and season on body weight,

fiber production, and fiber quality characteristics. Fully quantified components of the fleeces produced by the study animals were used by a collaborator to optimize textile manufacturing processes and develop new products composed of alpaca. In May 2002, half the animals were relocated to research facilities at Olds College, Alberta and the other half to San Angelo, Texas where they remained for the duration of the study. The animals were sheared (yearling fleece) soon after arrival and for the next 4 months were group fed free-choice with local hays and a custom ration for growing alpacas. Body and fleece weights were used to assign the alpacas to three equivalent groups (6 animals per treatment, 3 per rep) at each research location. The animals were then penned (3 animals per pen) and rations at both locations were formulated to provide the same complete diet when fed in equal amounts with the respective locally available hay. Animals were monitored monthly for weight and body condition. The amounts fed were adjusted over a 7-month period to produce a monthly gain of 3% of body weight while maintaining a body condition score of 3 or higher. The nutrition treatments were imposed in March, 2003, and fleeces were shorn for a second time in April, 2003. For the next year, one group was fed at levels established to produce 3% per month gain. Another group was fed 10% less (hay and ration), and a third treatment received 20% less. Animals were weighed and assessed for body condition monthly. Diets were adjusted monthly, and fleeces were shorn and characterized annually.

Changes due to increasing age (one through three years) followed the expected pattern. As the alpacas aged, their body weight, fleece weight, fiber diameter (and associated alpaca grade, SD, spin fineness, along-fiber AFD and SD), staple strength, resistance to compression, total medullated and objectionable fibers, and AFD of medullated fibers all increased. In contrast, fiber production per unit of body weight, CV of fiber, comfort factor, fiber curvature, and staple length showed declines. The body condition score, clean yield, vegetable matter present, flat fibers, SD of fiber diameter of medullated fibers, and position of break in the staple strength test were not affected.

Effects attributable to location were complicated by different diets but at this point our data indicate that when fed similar diets, animals grew faster at the northern location and attained significantly greater body weights. These larger animals produced more fiber that tended to be coarser (P = 0.06), more variable in fiber diameter along its length, more heavily medullated, and exhibited higher resistance to compression. In contrast, the Texas fleeces had higher clean yields and comfort factors, and were stronger (tensile strength) than the Alberta fleeces. All other characteristics were unaffected by location.

Young alpaca males fed to gain at moderate rates (2-3% increase in body weight per month) produced more fiber (actual and g/kg BW) that tended to be slightly coarser (P = 0.1) and more heavily medullated than animals that received 20% less feed. In all other measured traits, fleeces produced in the three nutrition treatments were very similar. The effects of season on fiber diameter related traits were negligible. Finally, this experiment has permitted documentation of variability in the many traits measured and also the correlation between traits, all of which information should be of considerable use to breeders and manufacturers.

INTRODUCTION

The alpaca *(Vicugna pacos)* is commercially the most important fiber producer of the New World camelidae family. Two breeds of alpaca are recognized; the huacaya and the suri. This study deals exclusively with the more populous, crimpy-fleeced huacayas. Alpacas are indigenous to the Andean highlands of South America. Of the approximately 3.5 million in the world, most (~ 3.0 million) are in Peru with the majority of the remainder being in Chile and Bolivia. These numbers in South America have been fairly static due in part to the lower, more productive altitudes (2600 to 3400 m) being used for sheep and cattle production. In contrast, the population of alpacas in North America has risen from less than 400 in 1984 to around 60,000 today. South American alpacas produce about 90% of the world camelid family's total production of fiber (Pumayalla and Leyva, 1988). Until about 20 years ago, alpacas were considered to be specifically adapted to their native environment. However, successful introductions of the species to Australia, Canada, England, France, New Zealand and the United States, to name but a few countries, have shown that alpacas are more versatile than previously recognized. Husbandry practices, and to a lesser extent production traits, have been documented in their native South American environment (approximate latitude, 5 to 20°S, approximate longitude, 70 to 80°W, altitude range, 2500 to 5000 m). Now that alpacas are being raised in North America as far south as Texas and certainly as far north as Alberta and Alaska, a need has arisen to develop management and diet recommendations for these animals under local conditions. Further, many owners and breeders are anxious to learn the effects of age, location, nutrition, and season on growth, reproduction, and fleece and fiber properties. This study was designed to answer some of these questions for environments represented by that of Olds, Alberta (latitude, 51° 46' N; longitude, 114° 5' W; altitude, 1035 m) and San Angelo, Texas (latitude, 31° 26' N; longitude, 100° 27' W; altitude, 563 m). The study we recently completed is just one part of a larger project in which Custom Woolen Mills, Ltd. of Carstairs, AB, Canada, developed technology to produce high quality yarns and finished products using all grades of domestically produced alpaca. This work is

described in a separate section of this report. The research was made possible by a grant from the National Research Council of Canada through their Industrial Research Assistance Program, as well as contributions from the two academic institutions, Olds College and Texas A&M University, and a private alpaca breeder, R&R Alpacas, Ltd.

HYPOTHESIS

Fiber production by alpacas and important processing characteristics of their fiber are affected by animal age, geographic location, nutrition, and season.

OBJECTIVES

1. Determine the effects of age, location, nutrition, and season on the body weight, fiber production, and quality characteristics of penned alpaca males.

2. Provide our textile manufacturer partner with fully characterized samples of alpaca fiber to be used for process optimization and new product development.

LITERATURE REVIEW

In sheep and Angora goats, age, location, nutrition, and season are known to produce effects on fiber diameter, staple length, and medullation (Sumner, 1979 and 1983; Birrell, 1992; Lupton et al., 1996 and 1997). In contrast, for species producing relatively small amounts of down fibers in fleeces composed predominantly of hair (e.g., cashmere goats) down fiber characteristics appear to be less sensitive to nutritional influences (Norton et al., 1990) although some nutritional effects have been noted in high-producing cashmere goats (McGregor, 1996). Because alpacas (like sheep and Angora goats) produce a predominantly single-component fleece, it might be expected that fiber production and some characteristics are amenable to nutritional manipulation. Documented information exists on this topic, but none has been generated addressing alpacas occupying a North American environment. Production of alpacas in the Andes was reviewed comprehensively by Fernandez-Baca (1975) as was their status and distribution (Novoa and Wheeler, 1984). Husbandry practices and genetic resources of alpaca in the Andes were also documented (Calle-Escobar, 1984; Hoffman and Fowler, 1995). However, very little information was presented on the specifics of fiber production and quality characteristics.

Reiner et al. (1987) used castrated male alpacas to estimate forage intake when the animals were free-ranging on high-altitude, native Andean pastures during the dry (winter) and wet (summer) seasons. Organic matter intakes of free-ranging alpacas during the dry and wet seasons were 1.8 and 1.6% of BW, respectively, these intakes being equivalent to 60.5 and 53.7 g DM/kg of metabolic body weight (MBW), respectively. Increased intake in the dry season did not result in increased BW (~ 62.0 kg) because (presumably) more energy was required for maintenance during the winter months. Dietary crude protein of the free-ranging alpacas was 8.1% in the dry season and 12.6% in the wet season. Organic matter intakes of caged alpacas having free access to freshly harvested, immature ryegrass (to simulate wet-season forage) and oat hay (to simulate low quality, dry-season forage) were 1.08 and 1.13% of BW, respectively. However, both groups of animals lost weight on this study and were reported to never having adjusted properly to confinement. Earlier studies with alpacas (Fernandez-Baca and Novoa, 1966; Flores and Valdivia, 1973; San Martin et al., 1982) housed in metabolism cages reported intake on a dry matter (DM) basis ranging from 1.2 to 2.4% of BW. Huasasquiche Schwarz (1974) found in a N balance study that alpacas maintained weight while consuming 2.13 g digestible protein/kg MBW daily. These intake findings all support the statement that alpacas consume less forage than sheep when expressed as a % of body weight. It has been suggested this may be due to slower passage of ingesta (i.e., better utilization of forage) through the gastrointestinal tract of alpacas compared to sheep (50.3 vs 43.2 h, respectively; Flores and Valdivia, 1973).

Russel et al. (1994) used 12 male alpacas and two levels of nutrition (0.67)and 2.0 of assumed maintenance requirements, i.e., 0.44 MJ ME/kg MBW) in a cross-over designed experiment to establish fiber production during two sixweek periods. The effect of the higher level of nutrition was to increase clean fiber production by 25% and fiber growth rate by 20%. The observed small increases in clean yield and average fiber diameter were not significant. The authors concluded that fiber production in alpaca can be positively influenced by nutrition but the effect appears to occur through increased growth in length and not diameter. This is unlike the effects in sheep and Angora goats where increased fiber production due to nutrition are attributed to increased rate of growth in staple length and in fiber diameter such that the ratio staple length: (fiber diameter)² remains relatively constant. The short durations in which fiber production was measured produced very small increases in clean yield and fiber diameter that were not statistically different. These differences might have become significant if more animals and/or longer times had been used in the experiment. There was no mention whether or not this was a pen or a range study, most likely a pen study.

Newman and Paterson (1994) reported that alpacas fed ad libitum on the North Island of New Zealand had 21% more fiber growth than control alpacas fed at maintenance. Fiber diameters were 25% greater in summer than in winter. Wuliji et al. (2000) reported on production performance, repeatability, and heritability estimates for BW, fleece weight and fiber characteristics of alpacas farmed on the South Island of New Zealand from 1989 to 1994. Mean BW at shearing, greasy fleece weights, clean fleece weights, yield, staple length, resistance to compression, and fiber diameter in adult alpacas were 68.0 kg, 2.16 kg, 2.03 kg, 93.6 %, 9.9 cm, 5.3 kPa, and 31.9 μ m, respectively. Seasonal variations in fiber growth and fiber diameter were small to moderate with lowest values in winter. The mid-side fleece site was shown to be appropriate for predicting mean fiber diameter of the bulk of the fleece.

Body weights, rate of gain of growing alpacas, fiber diameters, and clean yields (but not fleece weights) were markedly higher than data previously reported for South American camelids in their native environment. This was attributed to the better feed conditions and less harsh environment of New Zealand versus the native Andean punas. The result is also supported by the observation that alpacas grazing Mediterranean grasslands in Chile were able to maintain similar BW as in the New Zealand environment (Castellaro et al., 1998). Marshall et al. (1981) produced data showing that young female alpacas grazing improved pastures had a dramatic increase in fiber diameter.

Wuliji et al. (2000) also demonstrated that alpaca staple strength was higher than wool of comparable fineness. Given the high medullation levels of alpaca, this is somewhat surprising, but it is in agreement with staple strengths reported for other camelid fibers (Iniguez et al., 1998). In contrast, the resistance to compression of alpaca fibers was lower than that of comparable wool. This was expected given the lower levels of fiber crimp in alpaca.

The coarser fiber diameter reported for New Zealand farmed alpacas, though attributed to improved nutrition and less harsh climate, may also have been confounded by age. Calle-Escobar (1984) reported a difference of 10.5 μ m (27.9 vs 38.4 μ m) in female alpacas differing in age by 13 years. Briosco (1963) also showed that fiber diameter increased by 10 μ m (and staple length decreased by 4 cm) between gelded alpacas of 5 and 15 years of age. Another interesting aspect of the Wuliji et al. (2000) study was that the observed increase in staple lengths and fiber diameters would be predicted to produce higher fleece weights than those actually observed. Because fleece weights did not increase markedly, the authors concluded that the increase in fiber growth in the better environment resulted in greater fiber volume rather than mass, i.e. the fibers were more heavily medullated. Since this property is difficult to measure in colored fibers and was not measured in this study, this point could only be inferred. However, the conclusion did agree with data published earlier (Wuliji, 1993).

Compared to Romney sheep (Wuliji et al., 1995) the seasonal effect on fiber growth and fiber diameter was very small in the alpacas on New Zealand farms and corresponded mostly to available nutrition. This result was in agreement with those results reported by Marshall et al. in 1981, Newman and Paterson (1994), and Russel and Redden (1997).

MATERIALS AND METHODS

Management

Thirty-six alpaca males (yearlings representing 9 sires) were donated for this study by R&R Alpacas, Ltd., Olds, Alberta. In May 2002, half the alpacas were relocated to San Angelo whereas the other 18 were moved to Olds College. At each location, the alpacas were maintained together in a single pen. The animals were sheared (yearling fleece) soon after arrival and for the next 4 months were group-fed free-choice with local hays (~2 kg/hd/d) and a custom commercially available pelleted ration (Table 1, 225g/hd/d) for growing alpacas. Body and yearling fleece weights were used to assign alpacas to three

equivalent treatments (6 animals per treatment, 3 per rep) at each research location. In September, 2002 the animals were penned (3 animals per pen) and rations at both locations were formulated to provide the same complete diet when fed in equal amounts with the respective locally available hay. In Texas, the major roughage component of the diet was sorghum hay (Table 5). The mixed ration (Tables 2 and 5) contained sorghum grain, alfalfa meal, peanut hulls, soybean meal, ammonium chloride, vitamins, minerals (Tables 3 and 4), and a coccidiostat. The primary roughage source in Canada was Timothy hay (Table 10). The mixed ration (Tables 6 and 10) contained oat hulls, wheat mill run, alfalfa, light screenings, ammonium chloride, vitamins, minerals (Tables 7 and 8), and a coccidiostat. The actual complete diet (50% hay, 50% ration, Tables 5 and 12) was designed to contain 13% crude protein, 2% crude fat, 3% crude fiber (30% acid detergent fibers, 47% neutral detergent fibers) and 65%total digestible nutrients. Animals were monitored monthly for weight and body condition (body condition score, BCS, 1-5; 1=excessively thin, 5=obese). The amounts fed were adjusted over a 7-month period to produce a monthly gain of 3% of body weight while maintaining a body condition score of 3 or higher. The nutrition treatments were imposed in March, 2003 and fleeces were shorn a second time in April, 2003. For the next 6 months, one group (nutrition treatment 1) was fed at the level that had been established to produce 3% gain per month (i.e., 1.40% of body weight [BW] of mixed ration and 1.40% hay). The second group (treatment 2) was fed 10% less (1.26% BW hay and ration) and a third group (treatment 3) received 20% less (1.12% BW). Animals were weighed and assessed for body condition monthly and diets were adjusted after each weighing. In November 2003, the amounts fed were changed to 1.23, 1.11,

and 0.98% BW, respectively, to reduce weight gains that were higher than desired and to minimize orts, especially in Treatment 1. Fleeces were shorn in May, 2004 and characterized once more.

For the results of this experiment to be meaningful, it was extremely important that a comprehensive health program be maintained at each location. This was achieved with the assistance of the respective project veterinarians and animal nutrition specialists at each location.

Sampling and Shearing

A mid-side sample (~ 5 x 5 cm) was removed from each animal before shearing. The following fleece portions were shorn, weighed, packaged, and measured separately: short leg, long leg, butt, neck, and saddle (see Figure 1). Fleece portions from both sets of animals were tested at the Wool and Mohair Research Lab in Texas and most traits were also measured on the Alberta fleeces at the Natural Fibre Centre in Olds. While the alpacas were immobilized for shearing, their teeth and toenails were trimmed.

Side sample and fleece testing

The side samples were tested using an OFDA2000 instrument that measures average fiber diameter (AFD), standard deviation and coefficient of deviation of fiber diameter (SD and CV), average fiber curvature (AFC) and SD of fiber curvature (SDFC), comfort factor (CF) and average staple length (SL). This instrument also constructs an along-fiber profile of average fiber diameter so that changes throughout the year from tip to base are fully documented with this single test. The samples were used to examine the effects of age and season on fiber diameter – related properties.

The following sub-sampling and testing procedures were conducted on each of the 5 major portions of each fleece. The individual fleece portions were weighed and subsampled (20 staples per component) for staple length and strength testing. Raw and clean fleece weights and staple length measurements were adjusted to a 365-day growth period. Each portion was core sampled (2 x25 g raw cores; Johnson and Larsen, 1978), and these samples were used to obtain alpaca clean fiber base and vegetable matter base (ASTM, 2000a) and subsequently AFD, SDFD, CVFD, AFC, SDFC, CVFC, total medullation, flat fibers, and objectionable fibers using the OFDA (ASTM 2000c; light colored fleeces [white, cream and light fawn] only). The SL, SDSL, and CVSL were measured and calculated using 20 staples/fleece portion and ASTM Test Method D 1234 (ASTM 2000b). The staple strength (SS), SDSS, CVSS, and position of break (POB) were also measured on 20 staples using the Agritest Staple Breaker (Agritest, 1988a). A subsample of each set of scoured cores was carded and then measured for resistance to compression using the Agritest Resistance to Compression instrument (Agritest, 1988b).

STATISTICAL ANALYSIS

Yearling body and fleece weights were used to assign animals to nutrition treatments (imposed before the start of year 3) such that average values were not different among treatments. However, the same was not true for reps. Experience had taught us that relatively small intact males would likely be bullied by their heavier counterparts if penned together. To avoid this, one rep of each treatment consisted of relatively large animals while the other contained comparatively small ones. Yearling, two- and three-year-old body and fleece characteristics were used to establish the effects of age. Body weights of the two-year-old alpacas and data from their second fleeces were used as covariates in the analyses conducted on the three-year-old body weight and fleece data. Subsequently, data from the third set of fleeces (adjusted by the second year data) were used to establish the effects of nutrition. The effects of age (confounded with year), location and nutrition treatments and their interactions on all measured traits were established using the GLM procedure of SAS (SAS, 1996). Our model used the correct error term for testing treatment and location differences and removed the block effects of the treatments. Another model was used to investigate the effects of sire. The SAS CORR procedure was used to establish correlation coefficients among age and all the measured traits within and across treatments.

RESULTS AND DISCUSSION

Animal health and longevity

Texas

Shortly after arrival in Texas from Alberta, the alpacas were sheared (first fleece). Their health appeared to be excellent upon arrival. However, in August 2002, one of the alpacas (assigned to Treatment 1, Rep 1) became ill and died. Respiratory problem was the diagnosis of the veterinarian. Basically, the animal sat down, refused to eat and drink for several days, then died. In September 2003, a second animal was found dead in his pen. He had

previously exhibited no signs of illness and no weight loss. The animals frequently rolled in the dust in their pens, particularly during the heat of the day. The diagnosis was twisted gut. This animal had been assigned to Treatment 1, Rep 2. Replacements for neither of these animals were used in this experiment. Except for the two deaths, no other health problems were experienced during this two-year study.

Alberta

Two animals died in December 2002 and were immediately replaced with animals of similar age, weight, and genetic background from the original donor flock. These animals were assigned to Treatment 2, Reps 1 and 2. Causes of death were blockages in their urethras caused by the omission of ammonium chloride in one batch of the commercially mixed ration. Close to the end of the study, three animals died somewhat mysteriously in May 2004. Despite the security measures taken to safeguard these precious animals, foul play was suspected. The pathologist's report suggested that lead poisoning might have been involved in the deaths. Excessive amounts of lead were not found in the final batch of mixed ration. A major repercussion of these deaths was the omission of three fleeces (Treatment 1, Rep1; Treatment 2, Rep 2; and Treatment 3, Rep 1) from our year 3 analysis.

Feed consumption

Ingredients of the experimental rations and nutrient composition of the rations and hays used in Alberta and Texas are summarized in Tables 1 – 12. Because the protein content of Timothy hay was considerably higher than that of the sorghum-sudan grass hay, adjustments were made in the mixed rations such that the complete diets offered to animals in Alberta and Texas would be similar. Due primarily to the variable composition among batches of the ration purchased from the commercial feed mill in Alberta, the similarity of the two complete diets was not as close as we had originally calculated. A further complexity was that the animals did not always eat all that was offered. Because uneaten hay and ration was weighed back every day, we were able to calculate average consumption at both locations (Table 13).

After the first year's work in which hay and ration consumptions were adjusted to produce ~ 3% per month weight gains in the coming 2-yr-old males, we anticipated that animals in each treatment would eat all the feed that was subsequently offered. This was not the case, so after 6 months we decreased the amount of hay and ration offered.

Age effects

Table 14 summarizes the effects of age on body weight (see also Figures 2-5), body condition score, and the measured major fleece and fiber characteristics for the three sets of fleeces shorn from these male alpacas. There are no real surprises here. The animals increased in body weight and grew progressively more and coarser fiber that contained higher proportions of medullated fibers. Recall that while the third fleeces were being grown, all animals were on restricted feed (designed to produce specific, moderate gains) so reported body weights and fleece weights are not expected to be optimal. A measure of fiber production efficiency, clean fiber produced per unit of body weight, decreased as the animals aged. This may be surprising to some but it is

fairly common in other fiber producing species. Although clean yield of the second year fleeces is higher than the other two years, this is more likely an effect of year (confounded with age) and not a true age effect. Fiber curvature (a direct measure of crimp in the fully relaxed fibers) decreased slightly as the fibers coarsened. Note that these levels of fiber curvature, though typical for alpaca, are very low compared to wool from fine-wool sheep, for example. Staple length in the first (or cria) fleece was significantly longer than that in the second and third fleeces. This is not an unusual phenomenon in alpacas. Resistance to compression followed the reverse trend, being mainly influenced by increasing fiber diameter, in this particular case. Staple strength also increased from first to second fleece, but then decreased. Even at the lowest level (first fleeces) it is well above the minimum required for efficient textile processing (~35 N/ktex). Another interesting effect of age is that the proportion of the fleece classified as saddle increases linearly between the first and third fleece (Table 15). Butt and neck portions stay more or less constant and long and short leg both decrease. Each portion of the fleece increases in fiber diameter with age (Table 16) with short leg showing the greatest increase and the butt portion the least. Similarly, medullation shows annual increases in each of the fleece portions (Table 17). Staple length (Table 18) as previously indicated is a different story. For each fleece component, staple length was longest for the first fleece and shortest for the second fleece. Recall, staple length measurements were all adjusted to 365 days.

Effects of treatment and location

We originally designed the diets and the treatments in such a way that the animals maintained at both locations would gain weight at a similar rate, that being 3% per month for the Treatment 1 animals with animals in Treatments 2 and 3 gaining at slower rates. In fact, gains across all three treatments in Texas in the third year of the study averaged 1.9% per month while those in Alberta averaged 2.7% per month (Figure 6). Average monthly rates of gain were 2.6, 3.3, and 2.3% for Treatments 1, 2, and 3, respectively in Alberta (Figure 2) and 2.2, 1.7, and 1.8%, respectively in Texas (Figure 4). As explained earlier, the diets fed to the animals at the two locations were similar in terms of gross chemical composition (% crude protein, % crude fiber, etc.) but differed in terms of actual components and therefore specific proteins, etc. Thus, it is unclear at this point whether the higher rate of gain observed in Alberta was an effect of location, diet, or both. The statistical analysis identified two significant treatment * location interactions (Table 19). In Alberta, Treatment 2 alpacas were heavier than Treatment 3 animals, but not different than Treatment 1. In Texas, there were no significant differences in body weight among any of the treatment groups. Conversely, body condition scores were not different among treatments in Alberta whereas Treatment 2 animals had a lower score than either of the other treatments.

Tables 20 – 47 contain least squares means for each of the characteristics measured presented by treatment, location, and fleece component (including total fleece). Treatment 1 alpacas produced more fiber (greasy [Table 20] and clean [Table 24]) than animals in Treatments 2 and 3. Animals in Alberta produced more (8.6 %, clean) fiber than those in Texas. Tables 21 and 26 show the mean values of the fractions of different fleece components (greasy and clean, respectively). None of these were affected by treatment but the proportion of short leg fiber was higher in Alberta than Texas (14.0 vs. 9.3%, greasy). This is likely a result of slightly differing shearing techniques at the two locations. Small differences in clean yield (Table 22) were significant, but not very important. Overall, Treatment 2 animals yielded higher than Treatment 1 (92.1 vs 89.5%) and Texas fleeces yielded higher than Alberta fleeces (92.0 vs. 89.6%). Differences in vegetable matter content (Table 23) were only significant for the Butt component, with Treatment 1 containing more vegetable matter than Treatments 2 and 3. It should be noted that attempts were made to remove loose vegetable matter by vacuuming the fleeces just before shearing. Also in the Butt component, Texas fleeces contained considerably more vegetable matter (4.0 vs 1.2) than the Alberta fleeces.

Clean fiber production efficiency (g/kg BW) is presented in Table 25. Overall, production efficiency was highest in Treatment 1. Despite the very different climates, fiber production efficiency was not different between Alberta and Texas. Arithmetically, Treatment 1 produced coarser fibers than treatments 2 and 3 (Table 27). However, the differences (1.7 and 2.1 μ m, respectively) were not large enough to be significant. Similarly, location had no effect on fiber diameter. The same trends were noted for alpaca grade (Table 28), SD of fiber diameter (Table 29), CV of fiber diameter (Table 30), and spinning fineness (Table 32). Although the fiber diameter difference between locations was not (quite) significant (P = 0.06), the comfort factor difference was (Table 31). Texas fleeces (being arithmetically finer) had a higher comfort factor than Alberta fleeces (53.5 vs 44.0 deg/mm, respectively). Neither treatment nor

19

location produced differences in fiber curvature (Table 33), SD of curvature (Table 34), or along-fiber average fiber diameter (Table 35). A small difference in SD of along-fiber diameter (Table 36) between locations (0.06 μ m) proved to be significant (though not particularly important).

Only 15 of the alpacas used in this experiment were either white, cream, or light fawn. Thus, only 15 fleeces were considered in the medullation analysis. Fleeces in Treatment 3 contained less medullated fibers (Table 37) and less objectionable fibers (Table 39) than fleeces from Treatments 1 and 2. Flat fibers (Table 38) were not different among treatments. The same trend was also present in all of the fleece components, although some of the differences were not significant (e.g., short leg total medullation). Alberta fleeces contained more medullated fibers (Table 37) and more objectionable fibers (Table 39) than Texas fleeces. However, the average fiber diameter of these medullated fibers (Table 40) was identical (39.2 μ m) between locations and not different among treatments. Overall, SD of fiber diameter of medullated fibers (Table 41) was not affected by treatment or location. Staple lengths among treatments and between locations (Table 42) were very similar and not significantly different. Since differences in greasy and clean fiber production were noted, (among treatments and between locations) it is likely these were caused by the observed differences in fiber diameter rather than the small differences in staple length. It will be recalled that fleece production is proportional to staple length x (average fiber diameter)². The SD of staple length (Table 43) was not affected by treatment or location and in fact was quite constant throughout (~ 1.0 cm). Staple strength (Table 44) and SD of staple strength (Table 45) were not affected by treatment. However, staple strength of Texas fleeces was greater (80.3 vs

67.7 N/ktex) than Alberta fleeces. The SD of staple strength (Table 45) and average position of break (Table 46) were not affected by treatment or location. Lastly, treatment did not affect resistance to compression (Table 47) but surprisingly (in view of the identical fiber curvatures and the relative fiber diameter values) Alberta fleeces exhibited higher resistance to compression than Texas fleeces. This observation is hard to explain in light of the direct general relationships between fiber curvature, fiber diameter, and resistance to compression. However, this location difference is real, showing significance in each of the fleece components. It should also be noted that all the reported values for alpaca (~ 6 kPa) indicate the fiber has low resistance to compression (8.0 – 10.9 kPa is classified as medium and 11 - 18 kPa is high resistance to compression).

Variability in traits

Genetic improvement for a particular trait can only be achieved if heritability and variability exist for that trait. Development of breeding objectives and selection programs for any species requires a knowledge of genetic variation and heritability of the economically important traits and an understanding of the relationships among traits (Fogarty, 1995). An additional outcome of this experiment, in which we have measured many traits on numerous alpaca males over a three-year period, is that we have been able to document the variabilities in each trait. When comparing variabilities of traits having different mean values, the coefficient of variation (CV) is the most useful statistic because it is a measure of variability that is independent of the mean. Table 48 lists the CV's for the traits measured during our experiment. With the exception of clean yield (that is uniformly very high), it can be seen that most of the CV's are quite high and the CV's for total medullated fibers are very high. Regarding the relationships among traits, these are listed in Table 49 and represent critical information for a breeder to understand the full implications of selecting for any particular trait. Noteworthy positive correlations are between age and body weight, fleece weight, fiber diameter, alpaca grade, spinning fineness, total medullation, objectionable fibers, fiber diameter of medullated fibers, staple strength, and resistance to compression. Significant negative correlations exist between age and fiber production efficiency, comfort factor, fiber curvature, flat medullated fibers, and staple length. Intuitively most of these appear correct. Table 49 contains the results for the complete permutation of correlations of the traits measured in our study.

Effect of season

Staples removed from side samples were measured using the OFDA2000. This instrument measures fiber diameter from the tip to the base of the staple and produces a classical histogram and a staple profile. Typical profiles for Alberta (Figure 7) and Texas (Figure 8) indicate that no drastic changes in fiber diameter occur during the growing season. It is possible the rate of fiber growth changes with season but this was not measured in this experiment.

CONCLUSIONS

Effects of age, location, nutrition, and season have been reported for two groups of young male alpacas maintained under similar conditions in Alberta and Texas. Changes due to increasing age (one through 3 years) followed the expected pattern. As the alpacas aged, their body weight, fleece weight, fiber diameter (and associated alpaca grade, SD, spin fineness, along-fiber AFD and SD), staple strength, resistance to compression, total medullated and objectionable fibers, and AFD of medullated fibers all increased. In contrast, fiber production per unit of body weight, CV of fiber, comfort factor, fiber curvature, and staple length showed declines. The body condition score, clean yield, vegetable matter present, flat fibers, SD of fiber diameter of medullated fibers and position of break in the staple strength test were not affected.

Effects attributable to location were complicated by different diets but at this point our data indicate that when fed similar diets, animals grew faster at the northern location and attained significantly higher body weights. These larger animals produced more fiber that tended to be coarser (P = 0.06), more variable in fiber diameter along its length, more heavily medullated, and exhibited higher resistance to compression. In contrast, the Texas fleeces had higher clean yields and comfort factors, and were stronger than the Alberta fleeces. All other characteristics were unaffected by location.

Young alpaca males fed to gain at moderate rates (2-3% increase in body weight per month) produced more fiber (actual and g/kg BW) that tended to be slightly coarser (P = 0.1) and more heavily medullated than animals that received 20% less feed. In all other measured traits, fleeces produced in the three nutrition treatments were very similar. The effects of season on fiber diameter related traits were negligible. Finally, this experiment has permitted documentation of variability in the many traits measured and also the correlation between traits, all of which information should be of considerable use to breeders and manufacturers.

LITERATURE CITED

- ASTM. 2000a. Annual Book of ASTM Standards. Designation: D 584.
 Standard test method for wool content of raw wool laboratory scale. Sec.
 7. Vol. 07.01:180-184. ASTM, West Conshohocken, PA.
- ASTM. 2000b. Annual Book of ASTM Standards. Designation: D 1234.
 Standard test method of sampling and testing staple length of grease wool.
 Sec. 7. Vol. 07.01:275-278. ASTM, West Conshohocken, PA.
- ASTM. 2000c. Annual Book of ASTM Standards. Designation: D 6500.
 Standard test method for diameter of wool and other animal fibers using an Optical Fibre Diameter Analyser. Sec. 7. Vol. 07.02:1146-1157. ASTM, West Conshohocken, PA.
- Agritest Pty. Ltd. 1988a. Manual for the Agritest Staple Breaker System. 14 pp.
- Agritest Pty. Ltd. 1988b. Manual for the Agritest Resistance to Compression System. 9 pp.
- Birrell, H.A. 1992. Factors associated with the rate of growth of clean wool on grazing sheep. Aust. J. Agric. Res. 43:265:275.
- Briosco, C.D.R. 1963. Un estudio sobre la relacion entre la edad de las alpacas con el diametro de la fibra y la longitud de mecha. Thesis, Universidad Nacional Agraria La Molina, Lima. Peru.**
- Bustinza, A.V., P.J. Burfening, and R.L. Blackwell. 1988. Factors affecting survival in young alpacas (Lama pacos). J. Anim. Sci. 66:1139-1143.

- Calle-Escobar, R. 1984. Animal breeding and production of American camelids. In: Calle-Escobar, R. (Ed.). Talleres Graticos de Abril. Lima, 358 pp.
- Carmalt, J.L. 2000. Protein-energy malnutrition in alpacas. Small Animal Exotics 22, 12:1118-1124.
- Castellaro, G.G., J.P.A. Garcia-Huidobro, and P. Salinas. 1998. Alpaca
 liveweight variations and fiber production in Mediterranean range of Chile.
 J. Range Manage. 51(5):509-513.
- Fernandez-Baca, S.A., and C. Novoa. 1966. Estudio comparativo de alpacas.In: Rev. la Digestibilidad de las Forrajes en Ovinos y Alpacas. Fac. Med.Vet., Univ. Nac. Mayor de San Marcos. Lima, Peru. 18:88.*
- Fernandez-Baca, S. 1975. Alpaca raising in the high Andes. Wld. Anim. Rev. 14:1-8.*
- Flores, A., and R. Valdivia. 1973. Velocidad de pasaje de la ingesta en alpacas y ovinos. In: IV Congreso Nac., Med Vet. Huancayo, Peru.*
- Fogarty, N.M. 1995. Genetic parameters for live weight, fat and muscle measurements, wool production and reproduction in sheep: a review. Anim. Breed. Abs. 63: 101-143.
- Hoffman, E., and M.E. Fowler. 1995. The Alpaca Book. Clay Press Inc., Herald, California. 255 p.
- Huasasquiche Schwarz, A.E.C. 1974. Balance de nitrogeno y digestibilidad en alpacas y ovinos. Tesis de Bachiller. Univ. Nac. Mayor de San Marcos. Lima, Peru.*

- Iniguez, L.C., R. Alem, J. Wauer, and J. Mueller. 1998. Fleece type, fiber characteristics and production system of an outstanding llama population from Southern Bolivia. Small Rumin. Res. 30:57-65.
- Johnson, C.L., and S.A. Larsen. 1978. Clean wool determination of individual fleeces. J. Anim. Sci. 47:41-45.
- Lupton, C.J., J.E. Huston, J.W. Holloway, B.G. Warrington, D.F. Waldron, P.V. Thompson, F.A. Pfeiffer, and K. Qi. 1996. Animal performance and fleece characteristics of Angora goats maintained on western and southern Texas rangeland. J. Anim. Sci. 74:545-550.
- Lupton, C.J., D.F. Waldron, and F.A. Pfeiffer. 1997. Fiber diameter measurements of fine-wool rams on performance test. Sheep and Goat Res. J. 13:82-86.
- Marshall, A.J., V. Bustinza, and T.L. Quispe. 1981. Effecto de la alimentacion con alfalfa sobre la producion y reproduction de la alpaca. Summary of R.A.P.P.A. Ayacucho, Peru.**
- McGregor, B.A. 1996. Environmental, nutritional, and management influences on quality and production of mohair and cashmere. Proc. VI Int. Conf. on Goats. Vol. 1:285-299.
- Newman, S.-A.N., and D.J. Paterson. 1994. Effect of level of nutrition and season on fibre growth in alpacas. Proc. N. Z. Soc. Anim. Prod. 54:147-150.
- Norton, B.W., C.A. Wilde, and J.W. Hales. 1990. Grazing management studies with Australian cashmere goats. 1. Effect of stocking rate on the growth and fleece production of weaner goats grazing tropical pastures. Aust. J. Exp Agric. 30:769-775.

- Novoa, C., and J.C. Wheeler. 1984. Lama and alpaca. In: Mason, I.L. (Ed.). Evolution of Domesticated Animals. Longmans, London, pp 116-128.
- Pumayalla, A., and C. Leyva. 1988. Production and technology of the alpaca and vicuna fleece. Proceedings of the 1st International Symposium on Specialty Fibres. DWI. Aachen, pp 234-241.
- Reiner, R.J., F.C. Bryant, R.D. Farfan, and B.F. Craddock. 1987. Forage intake of alpacas grazing Andean Rangeland in Peru. J. Anim. Sci. 64:868-871.
- Russel, A.J.F., H. Redden, and J.W. Kay. 1994. The effect of nutrition on fibre characteristics and production in the Alpaca. Fine Fiber News 4: 17-18.
- Russel, A.J.F., and H.L. Redden. 1997. The effect of nutrition on fibre growth in the alpaca. Anim. Sci. 64: 509-512.
- SAS. 1996. SAS/STAT User's Guide (Release 6.12). SAS Inst. Inc., Cary, NC.
- San Martin, F., A. Husasquiche, R. Farfan, O. Del Valle, D. Holgado, T. Arbaiza,
 M. Navas, and C. Villarroel. 1982. Consumo y digestibilidad de pastos
 cultivados entre alpacas y ovinos. Resumenes de proyectos de
 investigacion. Univ. Nac. Mayor San Marcos. Lima, Peru.*
- Sumner, R.M.W. 1979. Efficiency of wool and body growth in pen-fed Romney, Coopworth, Perendale, and Corriedale sheep. New Zealand J. Agric. Res. 22:251-257.
- Sumner, R.M.W. 1983. Effect of feeding and season on fleece characteristics of Cheviot, Drysdale and Romney hogget wool. Proc. Ann. Conf. New Zealand Soc. Anim. Prod. 43:79-82.
- Wuliji, T. 1993. Fiber production and measurement for alpacas in New Zealand. Alpacas, Australia. pp 24-29.

- Wuliji, T., I.L. Weatherall, R.N. Andrews, K.G. Dodds, P.R. Turner, and R.Wheeler. 1995. Effect of selection for wool growth on seasonal patterns of yield, fibre diameter, and colour in Romney lines. Aust. J. Exp. Agric. 35:27-31.
- Wuliji, T., G.H. Davis, K.G. Dodds, P.R. Turner, R.N. Andrews, and G.D. Bruce. 2000. Production, performance, repeatability and heritability estimates for live weight, fleece weight and fiber characteristics of alpacas in New Zealand. Small Rumin. Res. 37:189-201.
- * Spanish language references accessed only through Reiner, et al., 1987.
- ** Spanish language references accessed only through Wuliji.

Component	Amount
Crude protein (minimum), %	11
Crude fat (minimum), %	7
Crude fiber (maximum), %	10
Calcium, %	0.91
Phosphorus, %	0.63
Iron, ppm	106
Manganese, ppm	43
Zinc, ppm	428
Copper, ppm	6.4
Iodine, ppm	25
Supplemental selenium, ppm	1.4
Vitamin A (minimum), IU/kg	36000
Vitamin D (minimum), IU/kg	5,000
Vitamin E (minimum), IU/kg	1,150

Table 1. Nutrient composition of commercial (Unifeed,Alberta) pelleted ration for growing alpacas

Ingredients	Percentage by weight
Sorghum grain	25.50
Dehydrated alfalfa meal, 17 $\%$	23.00
Peanut hulls	30.00
Soybean meal, 47 %	11.91
Molasses, cane	5.00
Ammonium chloride	1.00
Mono-dicalcium phosphate	1.50
TAES Alpaca vitamin-mineral premix	2.00
Deccox, 6 % active ingredient	0.092

Table 2. Ingredients of experimental ration fed to alpacas in Texas

Ingredients	Percentage by weight
Manganese oxide (MnO)	0.114
Potassium chloride (KCL)	18.532
Salt, feed mixing (NaCL)	72.979
Sulfur, flour (S)	5.008
Zinc oxide (ZnO)	0.641
Molasses, cane	1.500
Vitamin A ₃₀	0.732
Vitamin D ₃₀	0.099
Vitamin E ₅₀	0.396

Table 3. Ingredients of alpaca vitamin-mineral premix in Texas

Ingredients	Percentage by weight
Dry matter, %	99.4
Crude protein, %	0.1
Total digestible nutrients, %	1.2
Potassium, %	9.7
Sodium, %	21.2
Sulfur, %	5.0
Iron, ppm	4
Zinc, ppm	5000
Copper, ppm	1
Manganese, ppm	880
Vitamin A, IU/kg	219902
Vitamin D, IU/kg	29700
Vitamin E, IU/kg	1980

Table 4. Nutrient composition of alpaca vitamin - mineral premixin Texas

Item	Sorghum- Sudan grass hay	Feed mixture	Complete diet ^b
Dry matter, %	91.1	89.5	90.3
Crude protein, %	7.6	18.4	13.0
Fat, %	2.1	2.3	2.2
Crude fiber, %	25.7	19.7	22.7
Acid detergent fiber, %	36.6	24.7	30.7
Neutral detergent fiber, %	61.1	33.4	47.3
Total digestible nutrients, %	56.8	73.8	65.3
Calcium, %	0.85	0.84	0.84
Phosphorus, %	0.10	0.63	0.37
Magnesium, %	0.15	0.23	0.19
Potassium, %	1.73	1.57	1.65
Sodium, %	0.01	0.67	0.34
Sulfur, %	0.08	0.30	0.19
Iron, ppm	418	478	448
Zinc, ppm	23	99	61
Copper, ppm	14	12	13
Manganese, ppm	60	52	56
Molybdenum, ppm	0.45	1.80	1.13
Vitamin A, IU/kg	N/A	4879	2440
Vitamin D, IU/kg	N/A	659	330
Vitamin E, IU/kg	N/A	73	37
Decoquinate, ppm	0	62	31

Table 5. Average nutrient composition of hay, feed mixture, and complete diet of alpacas in Texas^a

a Nutrient values are on a 100% dry matter basis.
b The complete diet represents a 1:1 mixture of the hay and feed mixture.

Ingredient	Percentage by weight
Oat hulls, ground	30.000
Alfalfa suncured pellets	23.000
Beet pulp pellets	15.000
Wheat millrun pellets (cracked kernels)	14.018
Light screenings	10.000
Dicalcium phosphate, 21% bulk	2.1443
Molasses, best	2.000
Ammonium chloride	1.000
Sodium chloride, bulk	0.77169
Salt, Trace Mineral 15-7842	0.70397
1:1 Sheep mineral	0.51744
Dyna K, potassium chloride	0.50938
Magnesium chloride	0.19133
Limestone, glass	0.00649
Deccox, 6% active ingredient	0.1000
Vitamin E – 50,000	0.02236
Vitamin A (45), D, E	0.01500

Table 6. Ingredients of experimental ration fed to alpacas in Alberta

Ingredient	
Dry matter, %	98
Sodium, %	36
Iron, ppm	1525
Iodine, ppm	100
Zinc, ppm	9000
Manganese, ppm	6000
Selenium, ppm	90
Cobalt, ppm	50

Table 7. Composition of trace mineral salt usedin the Alberta alpaca ration (Unifeed 15-7842)

Item	Amount
Sodium, %	10.0
Sodium chloride, %	25.0
Calcium, %	12.0
Phosphorus, %	12.0
Magnesium, %	0.4
Copper, ppm	50
Zinc, ppm	9000
Iron, ppm	5000
Manganese, ppm	6000
Cobalt, ppm	50
Iodine, ppm	100
Selenium	30
Vitamin A, IU/lb	400000
Vitamin D, IU/lb	50000
Vitamin E, IU/lb	400

Table 8. Composition of 1:1 sheep mineral used in theAlberta alpaca ration

Ingredient	
Vitamin A, IU/kg	10000
Vitamin D, IU/kg	1250
Vitamin E, IU/kg	10

Table 9. Vitamin pre-mix used in the experimentalalpaca ration in Alberta

Item	Calculated Values	Analyzed average
Dry matter, %	91.24	89.90
Crude protein, %	12.30	15.30
Fat, %	1.76	2.13
Crude fiber, %	39.82	26.86
Acid detergent fiber, %	27.50	24.50
Neutral detergent fiber, $\%$	42.73	39.66
Total digestible nutrients, %	62.78	67.39
Calcium, %	0.99	1.44
Phosphorus, %	0.99	0.74
Magnesium, %	0.26	0.27
Potassium, %	1.54	1.28
Sodium, %	0.77	0.64
Sulfur, %	0.22	0.22
Iron, ppm	442.05	448
Zinc, ppm	149.95	143
Copper, ppm	32.89	32
Manganese, ppm	124.52	112
Molybdenum, ppm		2.5
Vitamin A, IU/lb	4386	N/A
Vitamin D, IU/lb	591	N/A
Vitamin E, IU/lb	10	N/A
Decoquinate, ppm	62	N/A

Table 10. Calculated and actual average nutrient composition of ration fed to alpacas in Alberta^a

^a Nutrient values are on a 100% dry matter basis.

Item	Timothy hay	Feed mixture	Complete diet ^b
Dry matter, %	86.7	89.9	88.3
Crude protein, %	14.4	15.3	14.9
Fat, %	2.9	2.1	2.5
Crude fiber, %	28.0	26.9	27.5
Acid detergent fiber, %	35.2	24.5	29.9
Neutral detergent fiber, %	52.9	39.7	46.3
Total digestible nutrients, %	60.7	67.4	64.1
Calcium, %	1.47	1.44	1.46
Phosphorus, %	0.17	0.74	0.46
Magnesium, %	0.20	0.27	0.24
Potassium, %	1.41	1.28	1.35
Sodium, %	0.02	0.64	0.33
Sulfur, %	0.14	0.22	0.18
Iron, ppm	364	448	406
Zinc, ppm	17	143	80
Copper, ppm	8	32	20
Manganese, ppm	32	112	72
Molybdenum, ppm	1.1	2.5	1.8
Vitamin A, IU/kg	N/A	9669	4835
Vitamin D, IU/kg	N/A	1303	652
Vitamin E, IU/kg	N/A	22	11
Decoquinate, ppm	0	62	31

 Table 11.
 Average nutrient composition of grass hay and feed mixture
 for alpacas in Alberta^a

^a Nutrient values are on a 100% dry matter basis.
^b The complete diet represents a 1:1 mixture of the hay and feed mixture.

Item	Alberta	Texas
Dry matter, %	88.3	90.3
Crude protein, %	14.9	13.0
Fat, %	2.5	2.2
Crude fiber, %	27.5	22.7
Acid detergent fiber, %	29.9	30.7
Neutral detergent fiber, %	46.3	47.3
Total digestible nutrients, %	64.1	65.3
Calcium, %	1.46	0.84
Phosphorus, %	0.46	0.37
Magnesium, %	0.24	0.19
Potassium, %	1.35	1.65
Sodium, %	0.33	0.34
Sulfur, %	0.18	0.19
Iron, ppm	406	448
Zinc, ppm	80	61
Copper, ppm	20	13
Manganese, ppm	72	56
Molybdenum, ppm	1.8	1.13
Vitamin A, IU/kg	4835	2440
Vitamin D, IU/kg	652	330
Vitamin E, IU/kg	11	37
Decoquinate, ppm	31	31

Table 12. Average nutrient composition of complete diets (50:50 hay : ration) offered to alpacas in Alberta and Texas^a

^a Nutrient values are on a 100% dry matter basis.

	Alberta								Те	xas		
		Treatment							Trea	tment		
		1		2		3		1		2		3
Hay offered	1.	32	1.	.19	1	.05	1	.32	1	.19	1	.05
Hay consumed	1.	26	1.	17	1	.05	1	.11	1	.07	0	.99
Ration offered	1.	32	1.	.19	1	.05	1	.32	1	.19	1	.05
Ration consumed	1.	05	1.	13	1	.03	3 1.26		1.17		1.04	
Total consumption	2.	31	2.30		2	.08	2.37		2.24		2.03	
		Rep							R	ер		
	1	2	1	2	1	2	1	2	1	2	1	2
Hay offered	1.32	1.32	1.19	1.19	1.05	1.05	1.32	1.32	1.19	1.19	1.05	1.05
Hay consumed	1.29	1.22	1.16	1.18	1.05	1.04	1.13	1.09	1.04	1.10	0.98	1.00
Ration offered	1.32	1.32	1.19	1.19	1.05	1.05	1.32	1.32	1.19	1.19	1.05	1.05
Ration consumed	1.13	0.97	1.15	1.10	1.01	1.05	1.20	1.32	1.15	1.18	1.04	1.04
Average body weight, kg	63.5	81.6	64.9	83.0	73.9	59.4	68.0	78.5	71.2	60.3	72.1	58.5

Table 13. Percentages (of bodyweight) of hay and ration offered and consumed during production of the third fleece

		Age	
Item	1	2	3
Body weight, kg	$40.0^{\circ} \pm 7$	7.7 58.6 ^b ±	9.3 $76.3^{a} \pm 12.4$
Body condition score, 1-5	$4.2^{a} \pm 0$	$3.9^{\rm b}$ ±	1.3 $4.2^{a} \pm 0.9$
Grease fleece weight, g	2443 ^b ± 3	$2448^{b} \pm$	$426 2910^{a} \pm 533$
Clean alpaca fiber present, %	$90.4^{b} \pm 3$	$95.2^{a} \pm$	$2.6 \qquad 90.9^{\text{b}} \pm 2.6$
Vegetable matter present, %	$2.3^{a} \pm 1$	$1.2^{c} \pm$	$1.8^{\text{b}} \pm 1.3$
Clean fleece weight, g	$2209^{b} \pm 3$	$2331^{\text{b}} \pm$	416 $2640^{a} \pm 461$
Clean fiber production efficiency, g/kg BW	$56.6^{a} \pm 1$	1.4 40.2 ^b ±	$6.7 35.4^{\circ} \pm 6.2$
Average fiber diameter, µm	25.3° ± 1	7 28.9 ^b ±	2.9 $33.2^{a} \pm 4.1$
Alpaca grade	$3.2^{\circ} \pm 0$	0.6 4.4 ^b ±	0.9 $5.3^{a} \pm 1.0$
SD of fiber diameter, µm	$6.9^{\circ} \pm 0$	$7.6^{\rm b}$ ±	0.9 $8.4^{a} \pm 1.0$
CV of fiber diameter, %	$27.1^{a} \pm 1$	8 26.1 ^{a,b} ±	2.8 $25.4^{\text{b}} \pm 2.8$
Comfort factor, %	$79.7^{a} \pm 6$	$64.6^{b} \pm$	13.0 $48.9^{\circ} \pm 17.9$
Spinning fineness, µm	26.1° ± 1	9 29.6 ^b ±	2.8 $33.7^{a} \pm 3.8$
Average fiber curvature, deg/mm	$34.2^{a} \pm 4$.4 33.9 ^a ±	5.1 $29.7^{\text{b}} \pm 5.8$
SD of fiber curvature, deg/mm	$28.1^{a} \pm 3$	$26.4^{\text{b}} \pm$	$3.7 \qquad 22.8^{\circ} \pm 4.5$
Along-fiber average fiber diameter, µm	25.0° ± 1	6 $28.6^{\rm b}$ ±	2.9 $32.9^{a} \pm 4.0$
SD of along-fiber diameter, µm	$0.62^{b} \pm 0$	$0.07 0.64^{a} \pm$	$0.07 \qquad 0.65^{a} \pm 0.07$
Total medullation, per 10,000 fibers	1444° ± 5	$587 2180^{b} \pm$	1216 $2897^{a} \pm 1613$
Flat fibers, per 10,000 fibers	$53^{b} \pm 2$	$22 97^{a} \pm$	42 $11^{\circ} \pm 8$
Objectionable fibers, per 10,000 fibers	$242^{c} \pm 1$.04 $408^{b} \pm$	$288 \qquad 585^{a} \pm 484$
Average fiber diameter of medullated fibers, µm	$33.4^{\circ} \pm 2$	$36.2^{\rm b}$ ±	$2.6 \qquad 39.2^{a} \pm 2.9$
SD of fiber diameter of medullated fibers, μm	8.2 ± 1		$1.5 9.2 \pm 1.7$
Average staple length, cm	$12.5^{a} \pm 1$.4 9.2° ±	$1.4 10.8^{b} \pm 1.1$
SD of staple length, cm	1.6 ^a ± 0	$1.2^{b} \pm$	$1.1^{\rm b} \pm 0.3$
Average staple strength, N/ktex	61.1° ± 1	2.2 89.7 ^a ±	11.3 $74.1^{\text{b}} \pm 10.1$
SD of staple strength, N/ktex	$13.9^{b} \pm 3$	$3.0 21.7^{a} \pm$	6.0 $14.1^{\text{b}} \pm 4.2$
Position of break	0.45 ± 0	0.05 0.43 ±	0.08 0.46 ± 0.06
Average resistance to compression, kPa	$5.0^{\mathrm{b}} \pm 0$	$5.6^{a} \pm$	0.5 $5.9^{a} \pm 1.0$

Table 14. Means (± SD) of body weight, body condition score and fleece traits by age

^{a,b,c} Means within a row with different superscripts differ (P < 0.05).

	Age										
Fleece component	1	-		2		3					
Butt	8.2 ^b ±	1.9	11.3ª	±	3.0	11.7ª ± 2.2					
Long leg	26.8ª ±	4.1	21.8 ^b	±	5.0	$20.8^{\text{b}} \pm 2.7$					
Neck	19.9 ^b ±	3.0	21.0ª	±	3.0	19.9^{b} ± 2.5					
Saddle	24.5° ±	7.0	30.5 ^b	±	6.0	35.7ª ± 4.3					
Short leg	20.7ª ±	3.5	15.4 ^b	±	5.4	$11.9^{\circ} \pm 5.0$					

Table 15. Effect of age on the fraction of each alpaca fleece component, clean %

 $^{\rm a,b,c}$ Means within a row that do not share a common superscript differ (P < 0.05).

	Age										
Fleece component	1	2	2	3							
Butt	23.6° ±	1.8 26.2 ^b ±	± 3.3 28	$3.5^{a} \pm 4.2$							
Long leg	25.8° ±	2.4 30.9 ^b ±	± 3.8 35	$5.9^{a} \pm 5.1$							
Neck	23.4° ±	2.4 28.2 ^b ±	± 3.3 33	$3.0^{a} \pm 4.7$							
Saddle	22.7° ±	1.7 25.4 ^b ±	± 2.9 28	$3.5^{a} \pm 3.7$							
Short leg	30.0° ±	2.9 37.6 ^b ±	± 5.1 48	$3.4^{a} \pm 7.1$							
Total	25.3° ±		± 2.9 33	$3.2^{a} \pm 4.1$							

Table 16. Effect of age on the average fiber diameter (μm) of each alpaca fleece component

a,b,c Means within a row that do not share a common superscript differ (P < 0.05).

	Age										
Fleece component		1				2			3		
Butt	1573°	±	903		2148 ^b	±	1313	2903ª	±	1607	
Long leg	1730 ^c	±	696		2554 ^b	±	1699	3248ª	±	2047	
Neck	1376 ^c	±	787		2582 ^b	±	1610	3413ª	±	2327	
Saddle	1230 ^b	±	775		1447^{b}	±	774	2262ª	±	1200	
Short leg	1397°	±	587		2354 ^b	±	1386	2837ª	±	2069	
Total	1444 ^c	±	587		2180 ^b	±	1216	2897ª	±	1613	

Table 17. Effect of age on the medullated fiber content (per 10,000) of each alpaca fleece component

 $^{\rm a,b,c}$ Means within a row that do not share a common superscript differ (P < 0.05).

Fleece component	1	Age	3
Butt	$14.5^{a} \pm 1.6$	$10.3^{\circ} \pm 1.8$	$12.0^{\rm b}$ ± 1.6
Long leg	$13.8^{a} \pm 1.7$	9.1° ± 2.2	10.1^{b} ± 1.4
Neck	$9.7^{a} \pm 1.3$	7.5° ± 1.1	8.9^{b} ± 1.3
Saddle	$14.8^{a} \pm 1.6$	$10.8^{\circ} \pm 1.6$	12.5^{b} ± 1.4
Short leg	$9.9^{a} \pm 1.5$	7.4° ± 1.7	$8.5^{b} \pm 1.0$
Total	$12.5^{a} \pm 1.4$	$9.2^{c} \pm 1.4$	$10.8^{b} \pm 1.1$

Table 18. Effect of age on the staple length (cm) of each alpaca fleece component

 $^{\rm a,b,c}$ Means within a row that do not share a common superscript differ (P < 0.05).

Location										
		Alberta Texas								
		Treatment								
Variables	1	2	3	1	2	3	Р			
Body weight, kg	78.3 ^{a,b}	83.6ª	76.4 ^b	75.5	70.9	72.6	0.0482			
Body condition score	4.9	4.9	4.9	3.9ª	3.1 ^b	3.7ª	0.0771			
^{a,b} Treatment means with	in a locati	on are di	fferent if t	hev have d	lifferent s	uperscri	pts			

Table 19. Least squares means of liveweight and body condition score for the significant treatment * location interactions

^{a,b} Treatment means within a location are different if they have different superscripts (P < 0.05).

		Treat	tment		Location			
Fleece component	1	2	3	Р		Alberta	Texas	Р
Butt	344	331	336	0.9614		354	321	0.5486
Long leg	696	585	530	0.1593		595	613	0.8538
Neck	669ª	564 ^b	542 ^b	0.0115		630ª	554 ^b	0.0204
Saddle	1153ª	1003 ^b	992 ^b	0.0283		1111a	987^{b}	0.0368
Short leg	384ª	$347^{a,b}$	310 ^b	0.0190		435ª	259 ^b	0.0021
Total	3246ª	2806 ^b	2730 ^b	0.0049		3079ª	2776 ^b	0.0092

Table 20. Least squares means of adjusted grease fleece weight (g) by treatment and location

		Treat	ment			Location			
Fleece component	1	2	3	Alberta	Texas	Р			
Butt	10.7	11.2	12.5	0.4283	11.3	12.1	0.6731		
Long leg	21.3	20.8	19.5	0.5149	19.8	21.3	0.5549		
Neck	20.8	20.1	19.8	0.7532	20.4	20.1	0.8078		
Saddle	35.5	35.6	36.8	0.5528	35.6	36.3	0.7092		
Short leg	11.7	11.8	11.4	0.5548	14.0ª	9.3 ^b	0.0022		
Total	100.0	100.0	100.0	0.4790	100.0	100.0	0.4085		

Table 21. Least squares means of fraction of greasy fleece (%) by treatment and location

		Trea	tment		Location			
Fleece component	1	2	3	Alberta	Texas	Р		
Butt	88.4^{b}	90.6ª	89.7 ^{a,b}	0.0176	89.4	90.0	0.3195	
Long leg	91.3 ^b	93.3ª	92.3 ^{a,b}	0.0537	90.5^{b}	94.1ª	0.0007	
Neck	89.2	91.0	89.9	0.2210	88.9^{b}	91.1ª	0.0292	
Saddle	88.5	90.4	90.5	0.2177	88.9	90.7	0.1203	
Short leg	93.4 ^b	95.8ª	94.3 ^{a,b}	0.0400	92.3 ^b	96.6ª	0.0005	
Total	89.5 ^b	92.1ª	90.7 ^{a,b}	0.0270	89.6 ^b	92.0ª	0.0081	

Table 22. Least squares means of clean alpaca fiber present (%) by treatment and location

^{a,b} Fleece component means within treatment or location row having different superscripts differ (P < 0.05).

		Trea	tment			Location			
Fleece component	1	2	3	Р	Alberta	Texas	Р		
Butt	3.3ª	2.4 ^b	2.1 ^b	0.0210	1.2 ^b	4.0ª	0.0005		
Long leg	0.4	0.8	0.4	0.6052	0.4	0.6	0.7233		
Neck	2.5	2.0	1.7	0.7385	1.4	2.8	0.1744		
Saddle	3.3	2.5	1.8	0.1545	1.9	3.2	0.2198		
Short leg	0.4	0.3	0.3	0.4898	0.3	0.4	0.3340		
Total	2.1	1.7	1.5	0.2138	1.2	2.3	0.0997		

Table 23. Least squares means of vegetable matter present (%) by treatment and location

^{a,b} Fleece component means within treatment or location row having different superscripts differ (P < 0.05).

		Trea	tment		Location			
Fleece component	1	2	3	Alberta	Texas	Р		
Butt	305	300	302	0.9950	315	289	0.5885	
Long leg	633	543	490	0.1729	537	574	0.6733	
Neck	596ª	515ь	484 ^b	0.0090	558ª	505 ^b	0.0313	
Saddle	1013ª	914 ^{a,b}	896 ^b	0.0911	981	901	0.1149	
Short leg	356ª	330ª	290 ^b	0.0181	401ª	250 ^b	0.0025	
Total	2904ª	2587 ^b	2472 ^b	0.0119	2764ª	2544 ^b	0.0308	

Table 24. Least squares means of adjusted clean fleece weight (g) by treatment and location

 a,b Fleece component means within treatment or location having different superscripts differ (P < 0.05).

		Trea	atment			Location				
Fleece component	1	2	3	Р	Alberta	a Texas	Р			
Butt	4.0	4.1	4.1	0.9449	3.9	4.2	0.6962			
Long leg	8.4	7.3	6.7	0.2036	6.7	8.3	0.1606			
Neck	7.8	6.9	6.7	0.1473	7.1	7.1	0.9535			
Saddle	13.2	12.3	12.3	0.2207	12.4	12.8	0.5576			
Short leg	4.6	4.3	3.9	0.1431	4.7	3.8	0.1378			
Total	38.2ª	34.3 ^b	34.0 ^b	0.0234	34.9	36.1	0.2216			

Table 25. Least squares means of clean fiber production efficiency (g/kg BW) by treatment and location

		Trea	tment		_	Location			
Fleece component	1	2	3	Р	_	Alberta	Texas	Р	
Butt	10.6	11.6	12.4	0.4156		11.3	11.7	0.8425	
Long leg	21.7	21.1	19.8	0.5151		19.9	21.7	0.4781	
Neck	20.7	19.9	19.6	0.6972		20.2	19.9	0.8079	
Saddle	34.9	35.3	36.6	0.4477		35.1	36.0	0.6462	
Short leg	12.2	12.3	11.7	0.3112		14.6ª	9.5 ^b	0.0008	
Total	100.0	100.0	100.0			100.0	100.0		

Table 26. Least squares means of fraction of clean fleece (%) by treatment and location

		Treat	tment		_	Location			
Fleece component	1	2	3	Р	_	Alberta	Texas	Р	
Butt	29.8	28.8	27.0	0.1560		30.5ª	26.6 ^b	0.0102	
Long leg	37.3	35.3	35.4	0.6645		36.0	36.0	0.9776	
Neck	34.7	32.5	32.1	0.1844		34.1	32.1	0.1055	
Saddle	28.6	28.1	28.6	0.8159		29.1	27.7	0.1107	
Short leg	51.0	47.7	47.7	0.4255		47.9	49.7	0.4917	
Total	34.6	32.9	32.5	0.1292		34.2	32.4	0.0620	

Table 27. Least squares means of average fiber diameter (μm) by treatment and location

		Trea	tment			Location	
Fleece component	1	2	3	Р	Alberta	Texas	Р
Butt	4.7	4.5	4.1	0.3025	5.1ª	3.7 ^b	0.0054
Long leg	6.4	6.0	6.1	0.7461	6.2	6.2	0.8603
Neck	6.2ª	5.4 ^b	5.4 ^{a,b}	0.0815	5.8	5.5	0.2830
Saddle	4.3	4.2	4.5	0.7341	4.6	4.0	0.0897
Short leg	6.9	7.0	6.7	0.3047	6.9	6.8	0.8335
Total	5.6	5.2	5.2	0.2901	5.6	5.0	0.0595

Table 28. Least squares means of alpaca grade by treatment and location

		Trea	tment			Location			
Fleece component	1	2	3	Р	Alberta	Texas	Р		
Butt	7.1	6.9	6.1	0.2399	7.0	6.4	0.3015		
Long leg	11.0	10.0	9.7	0.4028	9.4	11.1	0.0994		
Neck	8.1	7.8	7.2	0.1921	7.9	7.5	0.4274		
Saddle	6.9	7.0	7.0	0.9804	7.1	6.9	0.7684		
Short leg	12.1	12.4	12.6	0.8987	12.7	12.1	0.5810		
Total	8.7	8.5	8.2	0.6060	8.6	8.3	0.5644		

Table 29. Least squares means of SD of fiber diameter (μ m) by treatment and location

		Trea	tment		_	Location			
Fleece component	1	2	3	Р	_	Alberta	Texas	Р	
Butt	23.9	24.1	23.0	0.5964		23.4	23.9	0.7040	
Long leg	30.0	28.1	27.8	0.5234		26.6	30.7	0.0528	
Neck	23.5	24.0	22.6	0.1808		22.9	23.8	0.1833	
Saddle	23.9	24.9	25.2	0.8024		24.5	24.9	0.8197	
Short leg	24.6	25.6	26.9	0.3485		26.6	24.8	0.1818	
Total	25.2	25.7	25.3	0.8758		25.1	25.7	0.5222	

Table 30. Least squares means of CV of fiber diameter (%) by treatment and location

		Treat	tment		Location			
Fleece component	1	2	3	Р	_	Alberta	Texas	Р
Butt	60.8	64.4	74.5	0.1563		54.6	78.6	0.0045
Long leg	31.2	37.7	37.4	0.7574		32.7	38.3	0.5077
Neck	34.4	46.1	47.1	0.2092		38.6	46.5	0.2042
Saddle	68.0	69.6	65.7	0.7314		63.5	72.1	0.0967
Short leg	4.0	7.0	13.6	0.3835		10.4	6.1	0.4856
Total	44.2	50.2	51.9	0.2433		44.0 ^b	53.5ª	0.0408

Table 31. Least squares means of comfort factor (%) by treatment and location

		Trea	tment		 Location				
Fleece component	1	2	3	Р	 Alberta	Texas	Р		
Butt	29.9	28.8	26.8	0.1818	30.3ª	26.6 ^b	0.0248		
Long leg	39.6	36.9	36.7	0.5301	36.9	38.6	0.4829		
Neck	34.3	32.6	31.8	0.2257	34.2ª	31.6 ^b	0.0493		
Saddle	28.6	28.4	28.8	0.9366	29.4	27.9	0.1778		
Short leg	50.9	48.6	48.9	0.6835	49.7	49.3	0.8908		
Total	35.1	33.5	33.0	0.3098	34.7	33.0	0.1385		

Table 32. Least squares means of spinning fineness (µm) by treatment and location

		Trea	tment		Location			
Fleece component	1	2	3	Р		Alberta	Texas	Р
Butt	33.0	34.3	33.6	0.6667		33.0	34.3	0.3146
Long leg	26.3	28.2	27.3	0.7014		28.3	26.3	0.3292
Neck	28.0 ^b	31.0ª	30.6ª	0.0594		28.5 ^b	31.2ª	0.0331
Saddle	33.0	33.5	33.1	0.9127		33.4	33.0	0.7630
Short leg	17.8	19.8	20.6	0.5373		20.4	18.4	0.4619
Total	28.4	30.2	30.2	0.2593		29.6	29.6	0.9568

Table 33. Least squares means of average fiber curvature (deg/mm) by treatment and location

^{a,b} Fleece component means within treatment or location row having different superscripts differ (P < 0.05).

		Trea	tment			Location	
Fleece component	1	2	3	Р	Alberta	Texas	Р
Butt	25.5	25.6	26.7	0.6684	26.9	25.0	0.1572
Long leg	21.2	22.6	21.9	0.6679	23.4	20.4	0.0548
Neck	22.5	23.4	25.1	0.1386	23.6	23.7	0.9168
Saddle	23.6	22.2	25.4	0.5048	25.4	22.1	0.1660
Short leg	15.8	18.0	18.5	0.2293	19.8ª	15.1 ^b	0.0092
Total	22.0	22.5	24.1	0.3170	24.1	21.6	0.0578

Table 34. Least squares means of SD of fiber curvature (deg/mm) by treatment and location

		Treatment					Location			
Fleece component	1	2	3	Р	Alb	oerta	Texas	Р		
Butt	29.7	28.6	26.8	0.1286	3	0.3ª	26.4 ^b	0.0088		
Long leg	36.9	35.0	35.2	0.6529	3	5.7	35.7	0.9763		
Neck	34.6	32.1	31.7	0.1514	3	3.8	31.8	0.1208		
Saddle	28.4	27.8	28.3	0.7507	2	8.9	27.5	0.0933		
Short leg	50.4	47.1	46.9	0.4119	4	7.2	49.0	0.4658		
Total	34.4	32.5	32.1	0.0986	3	3.9	32.1	0.0584		

Table 35. Least squares means of along-fiber average fiber diameter (μm) by treatment and location

		Treat	tment			Location		
Fleece component	1	2	3	Р	Alberta	Texas	Р	
Butt	0.63	0.64	0.62	0.5152	0.66ª	0.60 ^b	0.0288	
Long leg	0.64	0.67	0.67	0.1778	0.69ª	0.63 ^b	0.0086	
Neck	0.66	0.66	0.69	0.5321	0.69	0.64	0.0571	
Saddle	0.61	0.61	0.62	0.6636	0.65ª	0.58^{b}	0.0050	
Short leg	0.73	0.74	0.73	0.9799	0.76	0.71	0.2235	
Total	0.65	0.66	0.66	0.5577	0.68ª	0.62 ^b	0.0011	

Table 36. Least squares means of SD of along-fiber diameter ($\mu m)$ by treatment and location

		Treatm	ent (N)	Location (N)				
Fleece component	1 (4)	2 (3)	3 (8)	Р	Alberta (10)	Texas (5)	Р	
Butt	4101ª	3737ª	2038 ^b	< 0.05	3156	2399	> 0.05	
Long leg	4092ª	5145ª	2115 ^b	< 0.05	3619ª	2508 ^b	< 0.05	
Neck	4876ª	5114ª	2044 ^b	< 0.05	3635	2970	> 0.05	
Saddle	2530 ^{a,b}	2814ª	1868 ^b	< 0.05	2290	2190	> 0.05	
Short leg	3233	3588	2358	> 0.05	3259	1994	> 0.05	
Total	3756ª	4202ª	1978^{b}	< 0.05	3124ª	2442 ^b	< 0.05	

Table 37. Means of total medullation (per 10,000) by treatment and location

^{a,b} Fleece component means within treatment or location row having different superscripts differ (P < 0.05).

	_	Treat	ment (N)			Location (N)			
Fleece component	1 (4)	2 (3)	3 (8)	Р	Alberta (10)	Texas (5)	Р		
Butt	3.5	3.7	2.4	> 0.05	2.4	4.0	> 0.05		
Long leg	16.3	9.8	3.0	> 0.05	4.3 ^b	21.8ª	< 0.05		
Neck	1.0	0.0	4.9	> 0.05	1.0 ^b	6.6ª	< 0.05		
Saddle	0.8	1.7	3.3	> 0.05	2.2	2.4	> 0.05		
Short leg	54.0	27.7	126.3	> 0.05	36.6	188.6	> 0.05		
Total	11.3	6.3	14.1	> 0.05	8.2	19.1	> 0.05		

Table 38. Means of flat fibers (per 10,000) by treatment and location

		Treatme	ent (N)			Location (N	1)
Fleece component	1 (4)	2 (3)	3 (8)	Р	Alberta (10)	Texas (5)	Р
Butt	627ª	678ª	239 ^b	< 0.05	513ª	264 ^b	< 0.05
Long leg	1015 ^{a,b}	1647ª	288 ^b	< 0.05	891	480	> 0.05
Neck	1384ª	1331ª	314 ^b	< 0.05	947ª	514 ^b	< 0.05
Saddle	459	433	251	> 0.05	353	340	> 0.05
Short leg	774	822	425	> 0.05	726	340	> 0.05
Total	869ª	998ª	288 ^b	< 0.05	674ª	407 ^b	< 0.05

Table 39. Means of objectionable fibers (per 10,000) by treatment and location

		Treatm	ent (N)]	Location (I	N)
Fleece component	1 (4)	2 (3)	3 (8)	Р	Alberta (10)	Texas (5)	Р
Butt	33.1	33.5	32.0	> 0.05	32.7	32.3	> 0.05
Long leg	41.4	40.5	41.9	> 0.05	39.8 ^b	44.8ª	< 0.05
Neck	40.2	40.0	37.1	> 0.05	38.0	39.5	> 0.05
Saddle	33.4	35.5	34.4	> 0.05	34.9	33.1	> 0.05
Short leg	58.1	52.2	54.7	> 0.05	51.6 ^b	62.1ª	< 0.05
Total	40.0	40.1	38.5	> 0.05	39.2	39.2	> 0.05

Table 40. Means of medullated fibers average fiber diameter (μm) by treatment and location

		Treatm	nent (N)	Location (N)			
Fleece component	1 (4)	2 (3)	3 (8)	Р	Alberta (10)	Texas (5)	Р
Butt	6.8	5.6	7.1	> 0.05	6.6	7.0	> 0.05
Long leg	11.3	9.2	11.4	> 0.05	9.4 ^b	13.9ª	< 0.05
Neck	8.2	7.0	7.9	> 0.05	7.2 ^b	9.1ª	< 0.05
Saddle	6.4	7.0	8.4	> 0.05	7.6	7.3	> 0.05
Short leg	13.9 ^{a,b}	12.6 ^b	16.5ª	< 0.05	12.8 ^b	19.5ª	< 0.05
Total	8.9	8.4	9.7	> 0.05	8.9	9.9	> 0.05

Table 41. Means of SD of fiber diameter of medullated fibers (μm) by treatment and location

^{a,b} Fleece component means within treatment or location row having different superscripts differ (P < 0.05).

		Trea	tment		 Location			
Fleece component	1	2	3	Р	 Alberta	Texas	Р	
Butt	11.2	10.6	10.2	0.2572	10.4	10.9	0.4536	
Long leg	8.9	8.7	9.2	0.6125	9.3	8.7	0.4374	
Neck	8.3	7.8	7.6	0.1379	7.8	8.0	0.3480	
Saddle	11.1	10.7	11.3	0.2399	11.1	11.0	0.6310	
Short leg	7.9	7.3	7.4	0.4709	7.7	7.4	0.6580	
Total	9.8	9.3	9.6	0.3310	9.4	9.7	0.4944	

Table 42. Least squares means of average staple length (cm) by treatment and location

		Trea	atment		Location	
Fleece component	1	2	3	Р	Alberta Texas	Р
Butt	0.9	1.2	1.2	0.2509	1.1 1.1	0.7506
Long leg	0.9	1.2	1.4	0.1311	1.3 1.1	0.4017
Neck	1.2	1.1	0.9	0.0702	1.1 1.1	0.7657
Saddle	0.9	0.9	0.8	0.9127	0.9 0.8	0.6603
Short leg	1.0	0.9	1.1	0.5068	1.1 0.9	0.2473
Total	1.0	1.0	1.0	0.9877	1.1 1.0	0.5747

Table 43. Least squares means of SD of staple length (cm) by treatment and location

		Treatment					Location			
Fleece component	1	2	3	Р		Alberta	Texas	Р		
Butt	79.2	71.7	72.0	0.2975		70.8	77.8	0.1299		
Long leg	78.0	80.3	74.4	0.4924		71.6^{b}	83.5ª	0.0296		
Neck	77.7	78.6	76.4	0.9415		68.9 ^b	86.2ª	0.0188		
Saddle	71.7	73.2	70.0	0.7800		67.0^{b}	76.2ª	0.0671		
Short leg	77.0	80.4	68.9	0.1390		71.4	79.4	0.1237		
Total	75.6	75.1	71.3	0.4040		67.7 ^b	80.3ª	0.0072		

Table 44. Least squares means of average staple strength (N/ktex) by treatment and location

		Trea	tment		 Location					
Fleece component	1	2	3	Р	 Alberta	Texas	Р			
Butt	11.3	15.5	10.6	0.1589	12.2	12.7	0.7836			
Long leg	13.8	14.6	14.7	0.9465	12.2	16.6	0.1149			
Neck	18.0	16.0	14.4	0.5540	15.2	17.0	0.5119			
Saddle	15.0	13.9	9.8	0.4524	10.1	15.7	0.0987			
Short leg	15.1	16.5	18.3	0.3692	17.0	16.3	0.6842			
Total	14.9	14.8	13.0	0.6905	12.9	15.6	0.2040			

Table 45. Least squares means of SD of staple strength (N/ktex) by treatment and location

		Trea	atment		 Location					
Fleece component	1	2	3	Р	 Alberta	Texas	Р			
Butt	0.46	0.44	0.45	0.9119	0.46	0.44	0.7478			
Long leg	0.46	0.43	0.43	0.6770	0.44	0.44	0.7979			
Neck	0.47	0.43	0.45	0.4189	0.46	0.44	0.4935			
Saddle	0.49	0.46	0.46	0.5573	0.47	0.47	0.9893			
Short leg	0.45	0.43	0.44	0.7222	0.46ª	0.41 ^b	0.0463			
Total	0.48	0.44	0.45	0.4356	0.46	0.45	0.6385			

Table 46. Least squares means of position of break by treatment and location

 $^{\rm a,b}$ Fleece component means within location row having different superscripts differ (P < 0.05).

_		Trea	atment		_	Location				
Fleece component	1	2	3	Р		Alberta	Texas	Р		
Butt	5.4	5.8	5.7	0.3393		6.6ª	4.8 ^b	0.0005		
Long leg	6.2	6.0	6.0	0.5487		6.8ª	5.4 ^b	0.0008		
Neck	6.2	6.1	6.3	0.8023		6.9ª	5.4 ^b	0.0016		
Saddle	5.8^{a}	5.5 ^b	$5.7^{\mathrm{a,b}}$	0.0815		6.4ª	5.0 ^b	0.0001		
Short leg	6.7	7.0	6.6	0.4045		7.4ª	6.1 ^b	0.0053		
Total	6.0	5.9	5.9	0.2395		6.7ª	5.2 ^b	0.0001		

Table 47. Least squares means of resistance to compression (kPa) by treatment and location

 $^{\rm a,b}$ Fleece component means within treatment or location row having different superscripts differ (P < 0.05).

<u>Age</u> Increases with increasing age	BW, ADJGFW, ADJCFW, AFD, AG, SDFD, SF, AFAFD, SDAFFD, TM, OF, MEDAFD, ASS (2 > 3 > 1), SDSS, R2C
Decreases with increasing age	ADJCFLW, CVFD, CF, AFC, SDFC, ADJASL, ADJSDSL
Unaffected by age	BCS, CAFP, VMP, FF, MEDSDFD, POB
Location AB > TX	BW, BCS, ADJGFW, ADJCFW, SDAFFD, TM, OF, R2C
AB < TX	CAFP, CF, ASS
AB = TX	VMP, ADJCFLW, AFD (P = 0.06), AG (P = 0.06), SDFD, CVFD, SF, AFC, SDFC (P = 0.06), AFAFD (P = 0.06), FF, MEDAFD, MEDSDFD, ASL, SDSL, SDSS, POB
$\frac{\text{Treatment}}{1 > 2} = 3$	ADJGFW, ADJCFW, ADJCFLW
1 = 2 > 3 = 1	BW (AB), TM, OF
1 = 2 = 3	BW (TX), BCS, CAFP, VMP, AFD (P = 0.1), AG, SDFD, CVFD, SF, CF, AFC, SDFC, AFAFD (P = 0.1), SDAFFD, FF, MEDAFD, MEDSDFD, ASL, SDSL, ASS, SDSS, POB, R2C

 Table 48.
 Summary of age, location, and treatment effects on alpaca characteristics

Key to abbreviations for characteristics measured and calculated on alpacas (Tables 48 and 50)

BW, body weight, kg BCS, body condition score (1-5) ADJGFW, adjusted (to 365 d) grease fleece weight, g ADJGFLW, adjusted greasy fiber production per unit of body weight, g/kg LSY, lab scoured vield, % VMP, vegetable matter present, % CAFP, clean alpaca fiber present, % ADJCFW, adjusted (to 365 days) clean fleece weight, g ADJCFLW, adjusted clean fiber production per unit of body weight, g/kg AFD, average fiber diameter, microns AG, alpaca grade (1-7) SDFD, standard deviation of fiber diameter, microns CVFD, coefficient of variation of fiber diameter, % CF, comfort factor, % SF, spinning fineness, microns AFC, average fiber curvature, deg/mm SDFC, standard deviation of fiber curvature, deg/mm CVFC, coefficient of variation of fiber curvature, % AFAFD, along-fiber average fiber diameter, microns SDAFFD, standard deviation of along-fiber fiber diameter, microns CVAFFD, coefficient of variation of along-fiber fiber diameter, % TM, total medullation, per 10,000 fibers FF, flat fibers, per 10,000 fibers OF, objectionable fibers, per 10,0000 fibers MEDAFD, average fiber diameter of medullated fibers, microns MEDSDFD, standard deviation of fiber diameter of medullated fibers, microns MEDCVFD, coefficient of variation of fiber diameter of medullated fibers, % ADJASL, adjusted (to 365 d) average staple length, cm ADJSDSL, adjusted (to 365 d) standard deviation of staple length, cm ADJCVSL, adjusted (to 365 d) coefficient of variation of staple length, % ASS, average staple strength, N/ktex SDSS, standard deviation of staple strength, N/ktex CVSS, coefficient of variation of staple strength, % POB, position of break, fraction of length from tip R2C, resistance to compression, kPa

Item	Mean	SD	CV
Body weight, kg	58.0	17.8	30.8
Body condition score, 1-5	4.1	1.0	23.7
Grease fleece weight, g	2588.3	490.4	18.9
Clean alpaca fiber present, %	92.2	3.7	4.0
Vegetable matter present, %	1.8	1.2	70.9
Clean fleece weight, g	2383.9	443.3	18.6
Clean fiber production efficiency, g/kg BW	44.4	12.4	27.9
Average fiber diameter, µm	29.0	4.4	15.1
Alpaca grade	4.3	1.2	27.6
SD of fiber diameter, µm	7.6	1.1	14.1
CV of fiber diameter, %	26.2	2.6	9.8
Comfort factor, %	65.0	18.0	27.7
Spinning fineness, µm	29.6	4.2	14.3
Average fiber curvature, deg/mm	32.7	5.5	16.7
SD of fiber curvature, deg/mm	25.9	4.5	17.5
Along-fiber average fiber diameter, µm	28.7	4.3	15.1
SD of along-fiber diameter, µm	0.6	0.1	11.7
Total medullation, per 10,000 fibers	2146	1307	60.9
Flat fibers, per 10,000 fibers	57.4	45.3	78.9
Objectionable fibers, per 10,000 fibers	404.4	343.1	84.8
Average fiber diameter of medullated fibers, µm	36.1	3.4	9.4
SD of fiber diameter of medullated fibers, µm	8.5	1.5	17.6
Average staple length, cm	11.2	2.3	21.0
SD of staple length, cm	1.3	0.3	26.3
Average staple strength, N/ktex	75.0	16.4	21.8
SD of staple strength, N/ktex	16.7	5.8	35.0
Position of break	0.45	0.06	14.6
Average resistance to compression, kPa	5.5	0.8	15.0

Table 49. Mean values and variability of alpaca traits (total fleece, all years)

 Table 50.
 Pearson correlation coefficients between alpaca traits

Table 50.	Pearson corr	relation coeff	icients betw	een alpaca t	raits							
	AGE	BW	BCS	ADJGFW	ADJGFLW	LSY	VMP	CAFP	ADJCFW	ADJCFLW	AFD	AG
AGE	1.00000	0.83477	0.01920	0.38992	-0.67158	-0.01166	-0.18555	0.05353	0.39820	-0.69815	0.72774	0.70233
	0.0	0.0001	0.8466	0.0001	0.0001	0.9084	0.0646	0.5968	0.0001	0.0001	0.0001	0.0001
BW	107 0.83477	104	104 0.25295	100 0.52591	-0.75519	100 0.12312	-0.30448	100 0.21176	100 0.57283	-0.76593	100 0.77320	100 0.77633
BW	0.0001	0.0	0.23293	0.02091	0.0001	0.12312	0.0020	0.0335	0.0001	0.0001	0.0001	0.0001
	104	105	105	101	101	101	101	101	101	101	101	101
BCS	0.01920	0.25295	1.00000	0.24465	-0.04952	-0.11029	-0.42349	0.04642	0.26033	-0.04034	0.16167	0.19443
	0.8466	0.0092	0.0	0.0137	0.6229	0.2722	0.0001	0.6448	0.0086	0.6887	0.1063	0.0514
ADJGFW	104 0.38992	105 0.52591	105 0.24465	101	101 0.08137	-0.19002	-0.00081	-0.16719	101 0.97743	101 0.07154	101 0.59190	101 0.59722
MD0UP W	0.0001	0.0001	0.24403	0.0	0.4185	0.0570	0.9936	0.0947	0.0001	0.4771	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
ADJGFLW	-0.67158	-0.75519	-0.04952	0.08137	1.00000	-0.38629	0.33970	-0.45562	-0.00755	0.99016	-0.46870	-0.48149
	0.0001	0.0001	0.6229	0.4185	0.0	0.0001	0.0005	0.0001	0.9402	0.0001	0.0001	0.0001
LSY	-0.01166	101 0.12312	-0.11029	-0.19002	-0.38629	101	-0.18135	101 0.94275	101 0.00771	-0.26899	101 0.08902	101 0.13040
1.51	0.9084	0.12312	0.2722	0.0570	0.0001	0.0	0.0695	0.0001	0.9390	0.0065	0.3760	0.1937
	100	101	101	101	101	101	101	101	101	101	101	101
VMP	-0.18555	-0.30448	-0.42349	-0.00081	0.33970	-0.18135	1.00000	-0.49893	-0.10502	0.28463	-0.26692	-0.32415
	0.0646	0.0020	0.0001	0.9936	0.0005	0.0695	0.0	0.0001	0.2960	0.0039	0.0070	0.0009
CAFP	100 0.05353	101 0.21176	101 0.04642	-0.16719	-0.45562	101 0.94275	-0.49893	101	101 0.04241	-0.33357	101 0.16897	101 0.22484
CAFP	0.05353	0.21176	0.04642	0.0947	-0.45562 0.0001	0.94275	-0.49893	1.00000	0.04241 0.6737	-0.33357 0.0007	0.16897 0.0912	0.22484
	100	101	101	101	101	101	101	101	101	101	101	101
ADJCFW	0.39820	0.57283	0.26033	0.97743	-0.00755	0.00771	-0.10502	0.04241	1.00000	0.00894	0.63004	0.64759
	0.0001	0.0001	0.0086	0.0001	0.9402	0.9390	0.2960	0.6737	0.0	0.9293	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
ADJCFLW	-0.69815 0.0001	-0.76593 0.0001	-0.04034 0.6887	0.07154 0.4771	0.99016 0.0001	-0.26899 0.0065	0.28463 0.0039	-0.33357 0.0007	0.00894 0.9293	1.00000 0.0	-0.46752 0.0001	-0.47296 0.0001
	100	101	101	101	101	101	101	101	0.9293	101	101	101
AFD	0.72774	0.77320	0.16167	0.59190	-0.46870	0.08902	-0.26692	0.16897	0.63004	-0.46752	1.00000	0.98010
	0.0001	0.0001	0.1063	0.0001	0.0001	0.3760	0.0070	0.0912	0.0001	0.0001	0.0	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
AG	0.70233	0.77633	0.19443	0.59722	-0.48149	0.13040	-0.32415	0.22484	0.64759	-0.47296	0.98010	1.00000
	0.0001 100	0.0001 101	0.0514 101	0.0001 101	0.0001 101	0.1937 101	0.0009 101	0.0238 101	0.0001 101	0.0001 101	0.0001 101	0.0 101
SDFD	0.57248	0.55155	-0.07321	0.43387	-0.37116	0.04588	-0.06252	0.06164	0.44483	-0.38015	0.77162	0.73965
	0.0001	0.0001	0.4669	0.0001	0.0001	0.6487	0.5345	0.5403	0.0001	0.0001	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
CVFD	-0.27460	-0.37378	-0.33839	-0.27511	0.17630	-0.12654	0.30715	-0.21567	-0.32689	0.15508	-0.40383	-0.42533
	0.0057 100	0.0001 101	0.0005 101	0.0054 101	0.0778 101	0.2073 101	0.0018 101	0.0303 101	0.0008 101	0.1215 101	0.0001 101	0.0001 101
CF	-0.68728	-0.74488	-0.18339	-0.58563	0.43974	-0.06354	0.30217	-0.15847	-0.62178	0.43853	-0.98590	-0.97438
01	0.0001	0.0001	0.0664	0.0001	0.0001	0.5278	0.0021	0.1135	0.0001	0.0001	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
SF	0.72396	0.75239	0.11026	0.57861	-0.46582	0.08168	-0.22611	0.14866	0.61144	-0.46726	0.98681	0.96304
	0.0001	0.0001	0.2723	0.0001	0.0001	0.4168	0.0230	0.1379	0.0001	0.0001	0.0001	0.0001
AFC	-0.30964	-0.38140	101 0.09347	-0.39764	101 0.17243	101 0.02096	-0.02832	0.02808	-0.39170	101 0.18739	-0.59544	-0.59262
	0.0017	0.0001	0.3525	0.0001	0.17243	0.02090	0.7786	0.7804	0.0001	0.18739	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
SDFC	-0.45555	-0.50493	0.01035	-0.40747	0.31090	-0.00625	0.01132	-0.00934	-0.40910	0.32996	-0.64563	-0.64651
	0.0001	0.0001	0.9182	0.0001	0.0016	0.9506	0.9105	0.9261	0.0001	0.0008	0.0001	0.0001
CVFC	-0.29000	-0.26435	-0.18141	-0.04976	101 0.27206	-0.04543	101 0.09378	-0.07184	-0.06469	101 0.28083	-0.14613	-0.15676
CVFC	0.29000	0.20433	0.0694	0.6212	0.27200	0.6519	0.09378	0.4753	0.5204	0.28083	0.14013	0.1175
	100	101	101	101	101	101	101	101	101	101	101	101
AFAFD	0.73048	0.77728	0.17438	0.59222	-0.47072	0.08349	-0.27111	0.16552	0.62967	-0.47001	0.99952	0.98007
	0.0001	0.0001	0.0811	0.0001	0.0001	0.4065	0.0061	0.0981	0.0001	0.0001	0.0001	0.0001
ODAEPD	100	101	101	101	101	101	101	101	101	101	101	101
SDAFFD	0.20498 0.0408	0.21962 0.0273	0.13910 0.1654	0.43396 0.0001	0.07526 0.4545	0.07049 0.4836	-0.15213 0.1288	0.11371 0.2575	0.47150 0.0001	0.10497 0.2961	0.33481 0.0006	0.33493 0.0006
	100	101	101	101	0.4343	0.4830	101	0.2373	101	0.2901	101	101
CVAFFD	-0.51372	-0.56544	-0.06001	-0.22391	0.52556	-0.07684	0.15272	-0.11950	-0.24145	0.54161	-0.67298	-0.67124
	0.0001	0.0001	0.5511	0.0244	0.0001	0.4450	0.1273	0.2339	0.0150	0.0001	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
TM	0.44410	0.38689	0.25689	0.48249	-0.15079	-0.13382	-0.10651	-0.08472	0.46747	-0.16096	0.71328	0.70936
	0.0011 51	0.0050 51	0.0688 51	0.0003 51	0.2909 51	0.3492 51	0.4569 51	0.5545 51	0.0005 51	0.2592 51	0.0001 51	0.0001
	51	51	51	51	51	51	51	51	51	51	51	51

 Table 50.
 Pearson correlation coefficients between alpaca traits (continued)

	AGE	BW	BCS	ADJGFW	ADJGFLW	LSY	VMP	CAFP	ADJCFW	ADJCFLW	AFD	AG
FF	-0.34010	-0.24480	-0.09774	-0.03324	0.14444	0.58022	-0.19128	0.59017	0.10067	0.21877	0.00796	0.08483
	0.0146	0.0834	0.4950	0.8169	0.3119	0.0001	0.1787	0.0001	0.4821	0.1230	0.9558	0.5539
	51	51	51	51	51	51	51	51	51	51	51	51
OF	0.39933	0.32132	0.27313	0.44141	-0.11636	-0.17065	-0.17698	-0.09398	0.42454	-0.12645	0.70401	0.68175
	0.0037	0.0215	0.0525	0.0012	0.4161	0.2312	0.2141	0.5119	0.0019	0.3766	0.0001	0.0001
	51	51	51	51	51	51	51	51	51	51	51	51
MEDAFD	0.68734	0.70004	0.26429	0.50345	-0.42908	-0.02460	-0.15495	0.03062	0.51572	-0.43209	0.90946	0.87900
	0.0001	0.0001	0.0609	0.0002	0.0017	0.8639	0.2776	0.8311	0.0001	0.0015	0.0001	0.0001
	51	51	51	51	51	51	51	51	51	51	51	51
MEDSDFD	0.25633	0.09281	-0.18575	-0.01762	-0.09683	-0.23075	0.13737	-0.25563	-0.07100	-0.12515	0.03605	-0.02519
	0.0694	0.5171	0.1919	0.9023	0.4991	0.1033	0.3364	0.0702	0.6205	0.3815	0.8017	0.8607
	51	51	51	51	51	51	51	51	51	51	51	51
MEDCVFD	-0.14749	-0.31210	-0.30208	-0.31708	0.15623	-0.27330	0.18222	-0.30942	-0.38503	0.12521	-0.48273	-0.53394
	0.3017	0.0258	0.0312	0.0234	0.2736	0.0523	0.2006	0.0271	0.0053	0.3813	0.0003	0.0001
	51	51	51	51	51	51	51	51	51	51	51	51
ADJASL	-0.74011	-0.56625	0.30753	-0.07455	0.62622	-0.23821	0.14778	-0.26004	-0.12444	0.62464	-0.53969	-0.52428
	0.0001	0.0001	0.0018	0.4587	0.0001	0.0164	0.1403	0.0086	0.2150	0.0001	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
ADJSDSL	-0.71132	-0.64826	-0.04417	-0.16288	0.65580	-0.14173	0.21940	-0.19931	-0.20025	0.66360	-0.60667	-0.61327
	0.0001	0.0001	0.6609	0.1036	0.0001	0.1574	0.0275	0.0457	0.0447	0.0001	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
ADJCVSL	-0.40963	-0.44383	-0.33844	-0.19876	0.35671	0.05529	0.14868	-0.00170	-0.19734	0.37621	-0.43433	-0.44355
	0.0001	0.0001	0.0005	0.0463	0.0003	0.5829	0.1378	0.9866	0.0479	0.0001	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101
ASS	0.34299	0.26724	-0.19055	-0.03253	-0.34893	0.43748	-0.23854	0.46642	0.06634	-0.31114	0.26579	0.30822
	0.0005	0.0069	0.0563	0.7468	0.0003	0.0001	0.0163	0.0001	0.5098	0.0015	0.0072	0.0017
	100	101	101	101	101	101	101	101	101	101	101	101
SDSS	0.04506	-0.00477	-0.32779	-0.21070	-0.17445	0.33396	-0.16801	0.35128	-0.13716	-0.14237	-0.00126	0.02865
	0.6562	0.9622	0.0008	0.0344	0.0810	0.0006	0.0931	0.0003	0.1714	0.1555	0.9900	0.7761
	100	101	101	101	101	101	101	101	101	101	101	101
CVSS	-0.26328	-0.26321	-0.25006	-0.28292	0.08871	0.02829	0.01421	0.02011	-0.27939	0.09339	-0.30538	-0.31224
	0.0081	0.0078	0.011 7	0.0041	0.3777	0.7789	0.8879	0.8418	0.0047	0.3529	0.0019	0.0015
	100	101	101	101	101	101	101	101	101	101	101	101
POB	0.02319	-0.03151	-0.03217	-0.00110	0.09560	-0.11289	0.01414	-0.10428	-0.02482	0.09496	-0.00762	-0.01940
	0.8188	0.7544	0.7495	0.9913	0.3416	0.2610	0.8884	0.2994	0.8054	0.3449	0.9397	0.8473
	100	101	101	101	101	101	101	101	101	101	101	101
R2C	0.47829	0.50538	0.27254	0.33823	-0.33095	0.09346	-0.36344	0.20561	0.38449	-0.31024	0.58374	0.58132
	0.0001	0.0001	0.0058	0.0005	0.0007	0.3526	0.0002	0.0391	0.0001	0.0016	0.0001	0.0001
	100	101	101	101	101	101	101	101	101	101	101	101

Table 50. Pearson correlation coefficients between alpaca traits (continued)

14510 00.	rearbon con	ciación coci	neients betw	een aipaea a	anto (commis	ucuj						
	SDFD	CVFD	CF	SF	AFC	SDFC	CVFC	AFAFD	SDAFFD	CVAFFD	TM	FF
AGE	0.57248	-0.27460	-0.68728	0.72396	-0.30964	-0.45555	-0.29000	0.73048	0.20498	-0.51372	0.44410	-0.34010
	0.0001	0.0057	0.0001	0.0001	0.0017	0.0001	0.0034	0.0001	0.0408	0.0001	0.0011	0.0146
BW	100 0.55155	-0.37378	-0.74488	100 0.75239	-0.38140	-0.50493	-0.26435	100 0.77728	100 0.21962	-0.56544	51 0.38689	-0.24480
5.	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0076	0.0001	0.0273	0.0001	0.0050	0.0834
	101	101	101	101	101	101	101	101	101	101	51	51
BCS	-0.07321	-0.33839	-0.18339	0.11026	0.09347	0.01035	-0.18141	0.17438	0.13910	-0.06001	0.25689	-0.09774
	0.4669	0.0005	0.0664	0.2723	0.3525	0.9182	0.0694	0.0811	0.1654	0.5511	0.0688	0.4950
ADJGFW	101 0.43387	-0.27511	-0.58563	101 0.57861	-0.39764	-0.40747	-0.04976	101 0.59222	101 0.43396	-0.22391	51 0.48249	-0.03324
ADJGFW	0.43387	0.0054	0.0001	0.0001	0.0001	0.0001	0.6212	0.39222	0.43390	0.0244	0.48249	0.8169
	101	101	101	101	101	101	101	101	101	101	51	51
ADJGFLW	-0.37116	0.17630	0.43974	-0.46582	0.17243	0.31090	0.27206	-0.47072	0.07526	0.52556	-0.15079	0.14444
	0.0001	0.0778	0.0001	0.0001	0.0847	0.0016	0.0059	0.0001	0.4545	0.0001	0.2909	0.3119
LOW	101	101	101	101	101	101	101	101	101	101	51	51
LSY	0.04588 0.6487	-0.12654 0.2073	-0.06354 0.5278	0.08168 0.4168	0.02096 0.8352	-0.00625 0.9506	-0.04543 0.6519	0.08349 0.4065	0.07049 0.4836	-0.07684 0.4450	-0.13382 0.3492	0.58022 0.0001
	101	101	101	101	101	101	101	101	101	101	51	51
VMP	-0.06252	0.30715	0.30217	-0.22611	-0.02832	0.01132	0.09378	-0.27111	-0.15213	0.15272	-0.10651	-0.19128
	0.5345	0.0018	0.0021	0.0230	0.7786	0.9105	0.3509	0.0061	0.1288	0.1273	0.4569	0.1787
<u></u>	101	101	101	101	101	101	101	101	101	101	51	51
CAFP	0.06164	-0.21567	-0.15847	0.14866	0.02808	-0.00934	-0.07184	0.16552	0.11371 0.2575	-0.11950	-0.08472	0.59017
	0.5403 101	0.0303 101	0.1135 101	0.1379 101	0.7804 101	0.9261 101	0.4753 101	0.0981 101	0.2575	0.2339 101	0.5545 51	0.0001 51
ADJCFW	0.44483	-0.32689	-0.62178	0.61144	-0.39170	-0.40910	-0.06469	0.62967	0.47150	-0.24145	0.46747	0.10067
	0.0001	0.0008	0.0001	0.0001	0.0001	0.0001	0.5204	0.0001	0.0001	0.0150	0.0005	0.4821
	101	101	101	101	101	101	101	101	101	101	51	51
ADJCFLW	-0.38015	0.15508	0.43853	-0.46726	0.18739	0.32996	0.28083	-0.47001	0.10497	0.54161	-0.16096	0.21877
	0.0001	0.1215	0.0001 101	0.0001	0.0606	0.0008	0.0044	0.0001	0.2961	0.0001	0.2592 51	0.1230
AFD	101 0.77162	-0.40383	-0.98590	101 0.98681	-0.59544	-0.64563	-0.14613	101 0.99952	101 0.33481	-0.67298	0.71328	51 0.00796
	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.1448	0.0001	0.0006	0.0001	0.0001	0.9558
	101	101	101	101	101	101	101	101	101	101	51	51
AG	0.73965	-0.42533	-0.97438	0.96304	-0.59262	-0.64651	-0.15676	0.98007	0.33493	-0.67124	0.70936	0.08483
	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.1175	0.0001	0.0006	0.0001	0.0001	0.5539
SDFD	101	101 0.26231	-0.74490	101 0.86420	-0.59112	-0.56099	101 0.04069	101 0.76407	101 0.17282	-0.56678	51 0.58941	-0.01923
SDID	0.0	0.20231	0.0001	0.0001	0.0001	0.0001	0.6862	0.0001	0.0840	0.0001	0.0001	0.8935
	101	101	101	101	101	101	101	101	101	101	51	51
CVFD	0.26231	1.00000	0.40734	-0.25260	0.07670	0.18048	0.25095	-0.41340	-0.26321	0.20477	-0.25044	-0.04910
	0.0081	0.0	0.0001	0.0108	0.4459	0.0709	0.0114	0.0001	0.0078	0.0400	0.0763	0.7322
CF	-0.74490	101 0.40734	101	-0.96888	101 0.56335	101 0.62981	101 0.18301	-0.98535	-0.33246	101 0.66103	-0.72574	-0.07553
Cr	0.0001	0.0001	0.0	0.0001	0.0001	0.02981	0.18301	0.0001	0.0007	0.00103	0.0001	0.5983
	101	101	101	101	101	101	101	101	101	101	51	51
SF	0.86420	-0.25260	-0.96888	1.00000	-0.61900	-0.65202	-0.10682	0.98456	0.30860	-0.67635	0.71558	0.00095
	0.0001	0.0108	0.0001	0.0	0.0001	0.0001	0.2877	0.0001	0.0017	0.0001	0.0001	0.9947
AFC	-0.59112	101 0.07670	101 0.56335	-0.61900	101	101 0.88053	-0.12910	-0.58755	101 0.14187	101 0.67041	-0.41130	-0.06457
AFC	0.0001	0.4459	0.0001	0.0001	0.0	0.0001	0.12910	0.0001	0.14187	0.0001	0.0027	0.6526
	101	101	101	101	101	101	101	101	101	101	51	51
SDFC	-0.56099	0.18048	0.62981	-0.65202	0.88053	1.00000	0.35113	-0.64040	0.19868	0.76868	-0.64660	-0.18081
	0.0001	0.0709	0.0001	0.0001	0.0001	0.0	0.0003	0.0001	0.0464	0.0001	0.0001	0.2042
CVFC	101 0.04069	101 0.25095	101 0.18301	-0.10682	-0.12910	101 0.35113	101	-0.15083	101 0.14727	101 0.26582	-0.32948	-0.22309
CVFC	0.6862	0.23093	0.18301	-0.10082 0.2877	0.12910	0.0003	0.0	0.13083	0.14727 0.1417	0.20382	0.0182	0.1156
	101	101	101	101	101	101	101	101	101	101	51	51
AFAFD	0.76407	-0.41340	-0.98535	0.98456	-0.58755	-0.64040	-0.15083	1.00000	0.33298	-0.67430	0.71092	-0.00168
	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.1322	0.0	0.0007	0.0001	0.0001	0.9907
SDAFED	101	101	101	101	101	0 10868	101	101	101	0.45515	0 16147	<u>51</u> 0.02407
SDAFFD	0.17282 0.0840	-0.26321 0.0078	-0.33246 0.0007	0.30860 0.0017	0.14187 0.1570	0.19868 0.0464	0.14727 0.1417	0.33298 0.0007	1. 00000 0.0	0.45515 0.0001	0.16147 0.2576	0.02407 0.8669
	101	101	101	101	101	101	101	101	101	101	0.2 <i>37</i> 0 51	51
CVAFFD	-0.56678	0.20477	0.66103	-0.67635	0.67041	0.76868	0.26582	-0.67430	0.45515	1.00000	-0.63763	-0.05069
	0.0001	0.0400	0.0001	0.0001	0.0001	0.0001	0.0072	0.0001	0.0001	0.0	0.0001	0.7239
	101	101	101	101	101	101	101	101	101	101	51	51
TM	0.58941 0.0001	-0.25044 0.0763	-0.72574 0.0001	0.71558 0.0001	-0.41130 0.0027	-0.64660 0.0001	-0.32948 0.0182	0.71092 0.0001	0.16147 0.2576	-0.63763 0.0001	1.00000 0.0	0.13480 0.3456
	0.0001 51	0.0703	0.0001 51	0.0001 51	51	0.0001 51	0.0182	51	0.2570	0.0001	51	0.3430
	51	51	01	51	51	51	51	51	51	51	51	51

 Table 50.
 Pearson correlation coefficients between alpaca traits (continued)

				-	(,						
	SDFD	CVFD	CF	SF	AFC	SDFC	CVFC	AFAFD	SDAFFD	CVAFFD	ТМ	FF
FF	-0.01923	-0.04910	-0.07553	0.00095	-0.06457	-0.18081	-0.22309	-0.00168	0.02407	-0.05069	0.13480	1.00000
	0.8935	0.7322	0.5983	0.9947	0.6526	0.2042	0.1156	0.9907	0.8669	0.7239	0.3456	0.0
	51	51	51	51	51	51	51	51	51	51	51	51
OF	0.63556	-0.17761	-0.71089	0.71837	-0.42238	-0.60417	-0.24673	0.70117	0.22721	-0.57220	0.94563	0.10324
	0.0001	0.2125	0.0001	0.0001	0.0020	0.0001	0.0809	0.0001	0.1088	0.0001	0.0001	0.4709
	51	51	51	51	51	51	51	51	51	51	51	51
MEDAFD	0.78646	-0.31185	-0.88223	0.92333	-0.62672	-0.67903	0.03608	0.90966	0.53616	-0.61836	0.44533	-0.00535
	0.0001	0.0259	0.0001	0.0001	0.0001	0.0001	0.8016	0.0001	0.0001	0.0001	0.0011	0.9703
	51	51	51	51	51	51	51	51	51	51	51	51
MEDSDFD	0.27989	0.29058	0.03140	0.09676	-0.00388	0.20486	0.38870	0.03614	0.33019	0.21299	-0.40498	-0.30484
	0.0467	0.0386	0.8268	0.4994	0.9784	0.1493	0.0048	0.8012	0.0180	0.1335	0.0032	0.0296
	51	51	51	51	51	51	51	51	51	51	51	51
MEDCVFD	-0.16289	0.48295	0.52673	-0.42862	0.38253	0.60519	0.33182	-0.48199	0.03100	0.57878	-0.64732	-0.29983
	0.2534	0.0003	0.0001	0.0017	0.0056	0.0001	0.0174	0.0003	0.8290	0.0001	0.0001	0.0326
	51	51	51	51	51	51	51	51	51	51	51	51
ADJASL	-0.52400	0.05635	0.51909	-0.56107	0.10088	0.19905	0.16041	-0.53608	-0.23374	0.31550	-0.30799	0.08079
	0.0001	0.5757	0.0001	0.0001	0.3155	0.0460	0.1091	0.0001	0.0186	0.0013	0.0279	0.5730
	101	101	101	101	101	101	101	101	101	101	51	51
ADJSDSL	-0.48755	0.21416	0.58494	-0.60450	0.22740	0.33328	0.21784	-0.60951	-0.16159	0.44854	-0.33715	0.25307
	0.0001	0.0315	0.0001	0.0001	0.0222	0.0007	0.0286	0.0001	0.1064	0.0001	0.0155	0.0732
	101	101	101	101	101	101	101	101	101	101	51	51
ADJCVSL	-0.26377	0.27700	0.41783	-0.41055	0.23519	0.32790	0.22339	-0.44257	-0.05095	0.37883	-0.23999	0.32311
	0.0077	0.0050	0.0001	0.0001	0.0179	0.0008	0.0247	0.0001	0.6129	0.0001	0.0898	0.0207
	101	101	101	101	101	101	101	101	101	101	51	51
ASS	0.19225	-0.15179	-0.26480	0.25865	-0.08396	-0.18821	-0.20144	0.26520	0.02362	-0.25527	0.18536	0.42758
	0.0541	0.1297	0.0074	0.0090	0.4039	0.0595	0.0434	0.0074	0.8146	0.0100	0.1928	0.0018
	101	101	101	101	101	101	101	101	101	101	51	51
SDSS	-0.02197	-0.03508	-0.03022	-0.00649	0.02064	-0.00614	-0.06123	-0.00357	-0.03235	-0.03971	-0.01381	0.59684
	0.8274	0.7276	0.7642	0.9486	0.8377	0.9514	0.5430	0.971 7	0.7481	0.6934	0.9234	0.0001
	101	101	101	101	101	101	101	101	101	101	51	51
CVSS	-0.22099	0.15665	0.27412	-0.29720	0.13543	0.20688	0.12745	-0.30826	-0.09309	0.22865	-0.32981	0.24368
	0.0264	0.1177	0.0055	0.0025	0.1769	0.0379	0.2041	0.0017	0.3545	0.0215	0.0181	0.0849
	101	101	101	101	101	101	101	101	101	101	51	51
POB	-0.06128	-0.06194	0.00464	-0.02218	0.09081	0.10435	0.03563	-0.00476	0.11737	0.12136	-0.09502	-0.18700
	0.5427	0.5383	0.9633	0.8258	0.3665	0.2990	0.7235	0.9623	0.2424	0.2267	0.5072	0.1888
	101	101	101	101	101	101	101	101	101	101	51	51
R2C	0.31113	-0.41115	-0.61057	0.54188	0.08719	0.03814	-0.06771	0.58754	0.51085	-0.15119	0.56148	-0.12778
	0.0015	0.0001	0.0001	0.0001	0.3860	0.7049	0.5011	0.0001	0.0001	0.1312	0.0001	0.3715
	101	101	101	101	101	101	101	101	101	101	51	51

						,						
	OF	MEDAFD	MEDSDFD	MEDCVFD	ADJASL	ADJSDSL	ADJCVSL	ASS	SDSS	CVSS	POB	R2C
AGE	0.39933	0.68734	0.25633	-0.14749	-0.74011	-0.71132	-0.40963	0.34299	0.04506	-0.26328	0.02319	0.47829
	0.0037	0.0001	0.0694	0.3017	0.0001	0.0001	0.0001	0.0005	0.6562	0.0081	0.8188	0.0001
	51	51		51	100	100	100	100	100	100	100	100
BW	0.32132 0.0215	0.70004 0.0001	0.09281 0.5171	-0.31210 0.0258	-0.56625 0.0001	-0.64826 0.0001	-0.44383 0.0001	0.26724 0.0069	-0.00477 0.9622	-0.26321 0.0078	-0.03151 0.7544	0.50538 0.0001
	0.0215	0.0001	51	0.0238	101	101	101	0.0009	0.9622	0.0078	101	101
BCS	0.27313	0.26429		-0.30208	0.30753	-0.04417	-0.33844	-0.19055	-0.32779	-0.25006	-0.03217	0.27254
Dee	0.0525	0.0609		0.0312	0.0018	0.6609	0.0005	0.0563	0.0008	0.0117	0.7495	0.0058
	51	51	51	51	101	101	101	101	101	101	101	101
ADJGFW	0.44141	0.50345	-0.01762	-0.31708	-0.07455	-0.16288	-0.19876	-0.03253	-0.21070	-0.28292	-0.00110	0.33823
	0.0012	0.0002	0.9023	0.0234	0.4587	0.1036	0.0463	0.7468	0.0344	0.0041	0.9913	0.0005
	51	51		51	101	101	101	101	101	101	101	101
ADJGFLW	-0.11636	-0.42908		0.15623	0.62622	0.65580	0.35671	-0.34893	-0.17445	0.08871	0.09560	-0.33095
	0.4161	0.0017		0.2736	0.0001	0.0001	0.0003	0.0003	0.0810	0.3777	0.3416	0.0007
LOW	51	51	51	51	101	101	101	101	101	101	101	101
LSY	-0.17065 0.2312	-0.02460 0.8639		-0.27330 0.0523	-0.23821 0.0164	-0.14173 0.1574	0.05529 0.5829	0.43748 0.0001	0.33396 0.0006	0.02829 0.7789	-0.11289 0.2610	0.09346 0.3526
	0.2312	0.8039	0.1033	0.0323	101	101	0.3829	101	101	101	101	0.3320
VMP	-0.17698	-0.15495		0.18222	0.14778	0.21940	0.14868	-0.23854	-0.16801	0.01421	0.01414	-0.36344
• 1011	0.2141	0.2776		0.2006	0.1403	0.0275	0.1378	0.0163	0.0931	0.8879	0.8884	0.0002
	51	51		51	101	101	101	101	101	101	101	101
CAFP	-0.09398	0.03062		-0.30942	-0.26004	-0.19931	-0.00170	0.46642	0.35128	0.02011	-0.10428	0.20561
	0.5119	0.8311	0.0702	0.0271	0.0086	0.0457	0.9866	0.0001	0.0003	0.8418	0.2994	0.0391
	51	51		51	101	101	101	101	101	101	101	101
ADJCFW	0.42454	0.51572		-0.38503	-0.12444	-0.20025	-0.19734	0.06634	-0.13716	-0.27939	-0.02482	0.38449
	0.0019	0.0001	0.6205	0.0053	0.2150	0.0447	0.0479	0.5098	0.1714	0.0047	0.8054	0.0001
	51	51	51	51	101	101	101	101	101	101	101	101
ADJCFLW	-0.12645 0.3766	-0.43209 0.0015	-0.12515 0.3815	0.12521 0.3813	0.62464 0.0001	0.66360 0.0001	0.37621 0.0001	-0.31114 0.0015	-0.14237 0.1555	0.09339 0.3529	0.09496 0.3449	-0.31024 0.0016
	0.3700	0.0013	0.3813	0.3813	101	101	101	101	101	0.3329	0.3449	101
AFD	0.70401	0.90946		-0.48273	-0.53969	-0.60667	-0.43433	0.26579	-0.00126	-0.30538	-0.00762	0.58374
	0.0001	0.0001	0.8017	0.0003	0.0001	0.0001	0.0001	0.0072	0.9900	0.0019	0.9397	0.0001
	51	51		51	101	101	101	101	101	101	101	101
AG	0.68175	0.87900	-0.02519	-0.53394	-0.52428	-0.61327	-0.44355	0.30822	0.02865	-0.31224	-0.01940	0.58132
	0.0001	0.0001	0.8607	0.0001	0.0001	0.0001	0.0001	0.0017	0.77 61	0.0015	0.8473	0.0001
	51	51		51	101	101	101	101	101	101	101	101
SDFD	0.63556	0.78646		-0.16289	-0.52400	-0.48755	-0.26377	0.19225	-0.02197	-0.22099	-0.06128	0.31113
	0.0001	0.0001	0.0467	0.2534	0.0001	0.0001	0.0077	0.0541	0.8274	0.0264	0.5427	0.0015
CVFD	-0.17761	51 -0.31185	0.29058	51 0.48295	101 0.05635	101 0.21416	101 0.27700	-0.15179	-0.03508	101 0.15665	-0.06194	-0.41115
CVFD	0.2125	0.0259		0.48295	0.03033	0.21410	0.27700	0.1297	0.7276	0.13003	0.5383	0.0001
	51	51		51	101	101	101	101	101	101	101	101
CF	-0.71089	-0.88223	0.03140	0.52673	0.51909	0.58494	0.41783	-0.26480	-0.03022	0.27412	0.00464	-0.61057
	0.0001	0.0001	0.8268	0.0001	0.0001	0.0001	0.0001	0.0074	0.7642	0.0055	0.9633	0.0001
	51	51	51	51	101	101	101	101	101	101	101	101
SF	0.71837	0.92333		-0.42862	-0.56107	-0.60450	-0.41055	0.25865	-0.00649	-0.29720	-0.02218	0.54188
	0.0001	0.0001	0.4994	0.0017	0.0001	0.0001	0.0001	0.0090	0.9486	0.0025	0.8258	0.0001
4.50	51	51		51	101	101	101	101	101	101	101	101
AFC	-0.42238 0.0020	-0.62672 0.0001		0.38253	0.10088	0.22740	0.23519	-0.08396	0.02064	0.13543	0.09081	0.08719
	0.0020	0.0001	0.9784 51	0.0056 51	0.3155 101	0.0222 101	0.0179 101	0.4039 101	0.8377 101	0.1769 101	0.3665 101	0.3860 101
SDFC	-0.60417	-0.67903		0.60519	0.19905	0.33328	0.32790	-0.18821	-0.00614	0.20688	0.10435	0.03814
5010	0.0001	0.0001		0.0001	0.0460	0.0007	0.0008	0.0595	0.9514	0.0379	0.2990	0.7049
	51	51		51	101	101	101	101	101	101	101	101
CVFC	-0.24673	0.03608		0.33182	0.16041	0.21784	0.22339	-0.20144	-0.06123	0.12745	0.03563	-0.06771
	0.0809	0.8016	0.0048	0.0174	0.1091	0.0286	0.0247	0.0434	0.5430	0.2041	0.7235	0.5011
	51	51		51	101	101	101	101	101	101	101	101
AFAFD	0.70117	0.90966		-0.48199	-0.53608	-0.60951	-0.44257	0.26520	-0.00357	-0.30826	-0.00476	0.58754
	0.0001	0.0001	0.8012	0.0003	0.0001	0.0001	0.0001	0.0074		0.0017	0.9623	0.0001
SDAFFD	51 0.22721	0.52616		0.02100	101	0 16150	101	101 0.02362	101	101	101	101 0.51085
SUAFFU	0.22721 0.1088	0.53616 0.0001		0.03100 0.8290	-0.23374 0.0186	-0.16159 0.1064	-0.05095 0.6129	0.02362	-0.03235 0.7481	-0.09309 0.3545	0.11737 0.2424	0.51085
	0.1088	0.0001		0.8290	101	101	101	101	101	0.3343	0.2424	101
CVAFFD	-0.57220	-0.61836		0.57878	0.31550	0.44854	0.37883	-0.25527	-0.03971	0.22865	0.12136	-0.15119
	0.0001	0.0001	0.1335	0.0001	0.0013	0.0001	0.0001	0.0100	0.6934	0.0215	0.2267	0.1312
	51	51		51	101	101	101	101	101	101	101	101
TM	0.94563	0.44533		-0.64732	-0.30799	-0.33715	-0.23999	0.18536	-0.01381	-0.32981	-0.09502	0.56148
TM												
1 1/1	0.0001	0.0011	0.0032	0.0001	0.0279	0.0155	0.0898	0.1928	0.9234	0.0181	0.5072	0.0001

 Table 50.
 Pearson correlation coefficients between alpaca traits (continued)

OF MEDAFD MEDCVFD ADJASL ADJCNSL ADJCVSL ASS SDSS CVSS PDB P2C FF 0.1034 0.00535 0.0326 0.0370 0.23311 0.42758 0.50644 0.24968 0.18700 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.11870 0.01281 0.03281 -0.25815 0.10141 0.54584 0.3171 0.4234 0.44950 0.4405 0.4405 0.4405 0.4405 0.4405 0.4405 0.4167 0.0553 -0.25815 -0.10141 0.54584 MEDAFD 0.48728 1.00000 0.31364 -0.24987 0.0017 0.0485 0.21270 0.0053 -0.22956 -0.06140 0.6357 0.515 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 <td< th=""><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>					-								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		OF	MEDAFD	MEDSDFD	MEDCVFD	ADJASL	ADJSDSL	ADJCVSL	ASS	SDSS	CVSS	POB	R2C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FF	0.10324	-0.00535	-0.30484	-0.29983	0.08079	0.25307	0.32311	0.42758	0.59684	0.24368	-0.18700	-0.12778
OF 1.00000 0.48728 -0.25470 -0.50585 -0.28534 -0.28134 -0.28171 0.11283 -0.03228 -0.25815 -0.10141 0.54584 MEDAFD 0.4003 0.0713 0.0002 0.0424 0.0456 0.4305 0.8167 0.0674 0.4789 0.0001 MEDAFD 0.48728 1.00000 0.31364 -0.24848 -0.49850 -0.51371 -0.3022 0.12770 0.00553 -0.22956 -0.06140 0.63572 0.0003 0.0 0.0250 0.0787 0.0002 0.0001 0.0480 0.03172 -0.14895 -0.21415 -0.11230 0.15933 -0.0184 0.0713 0.0250 0.0001 0.0496 0.4286 0.8251 0.2969 0.9822 0.4327 0.2623 0.9398 0.0713 0.0002 0.0201 0.0000 0.20040 0.2019 0.23943 -0.2148 0.06682 0.1927 0.33396 0.0002 0.0787 0.00001 0.0496 0.3892 0.1166		0.4709	0.9703	0.0296	0.0326	0.5730	0.0732	0.0207	0.0018	0.0001	0.0849	0.1888	0.3715
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-				-			-			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	OF												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MEDAFD												
MEDSDFD -0.25470 0.31364 1.00000 0.83237 -0.27636 -0.11330 0.03172 -0.14895 -0.23415 -0.11230 0.15993 -0.01084 0.0713 0.0250 0.0 0.0001 0.0496 0.42821 0.2969 0.0982 0.4327 0.2623 0.9398 51													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MEDSDFD												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MEDCVFD												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ADJASL												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ADJSDSL												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ADJCVSL												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ASS												
SDSS -0.03328 0.00553 -0.23415 -0.21418 -0.26389 -0.07257 0.17138 0.60709 1.00000 0.64238 -0.16476 -0.02317 0.8167 0.9693 0.0982 0.1312 0.0077 0.4708 0.0866 0.0001 0.0 0.0001 0.0997 0.8181 51 51 51 51 101													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SDSS												
CVSS -0.25815 -0.22956 -0.11230 0.06682 0.11110 0.24505 0.33103 -0.17019 0.64238 1.00000 0.01537 -0.22617 0.0674 0.1051 0.4327 0.6413 0.2687 0.0135 0.0007 0.0888 0.0001 0.0 0.8788 0.0230 51 51 51 51 101													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
51 51 51 51 101	CVSS												
POB -0.10141 -0.06140 0.15993 0.19273 -0.05581 0.02762 0.06622 -0.21119 -0.16476 0.01537 1.00000 0.06882 0.4789 0.6686 0.2623 0.1754 0.5793 0.7840 0.5106 0.0340 0.0997 0.8788 0.0 0.4941 51 51 51 51 101													
0.4789 0.6686 0.2623 0.1754 0.5793 0.7840 0.5106 0.0340 0.0997 0.8788 0.0 0.4941 51 51 51 51 101 1		-										-	
51 51 51 51 101	POB												
R2C 0.54584 0.63572 -0.01084 -0.35396 -0.48400 -0.41043 -0.19269 0.13566 -0.02317 -0.22617 0.06882 1.00000 0.0001 0.0001 0.9398 0.0108 0.0001 0.00535 0.1762 0.8181 0.0230 0.4941 0.0													
0.0001 0.0001 0.9398 0.0108 0.0001 0.0001 0.0535 0.1762 0.8181 0.0230 0.4941 0.0													
	R2C												
<u>51 51 51 51 51 101 101 101 101 101 101 1</u>													
		51	51	51	51	101	101	101	101	101	101	101	101

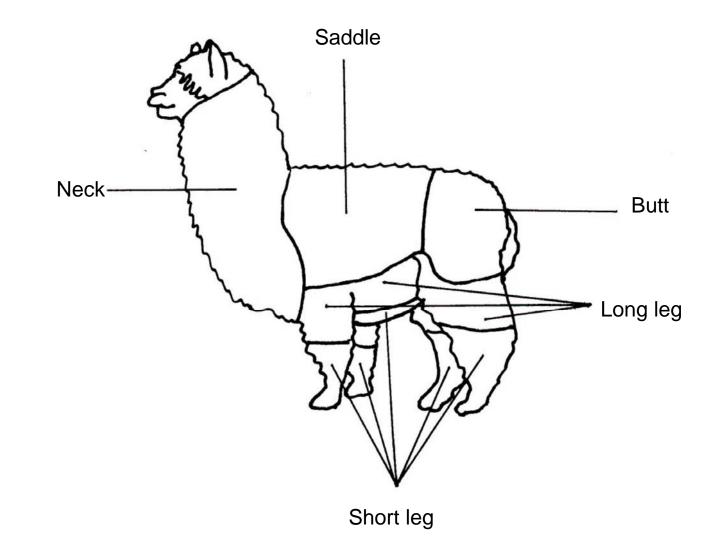
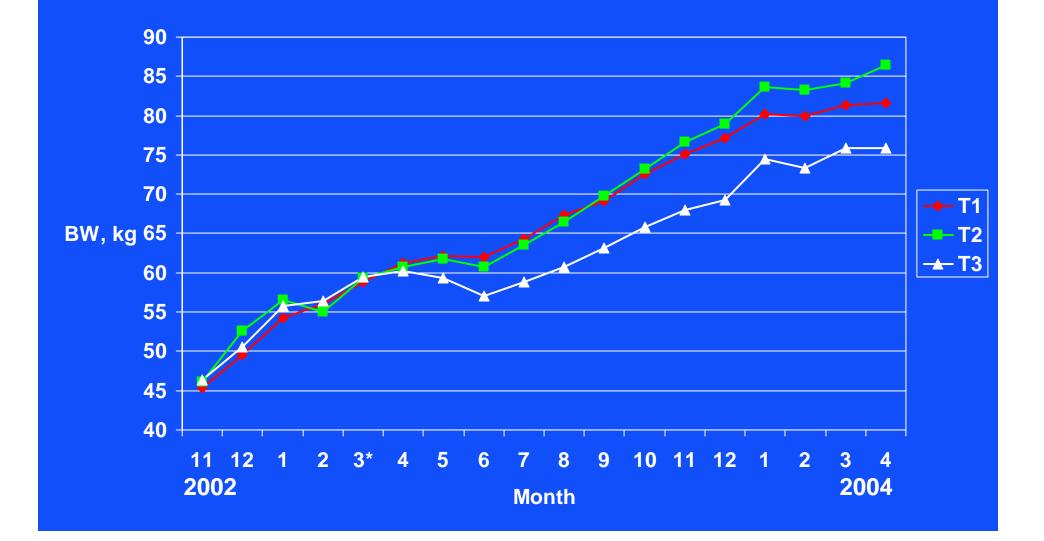
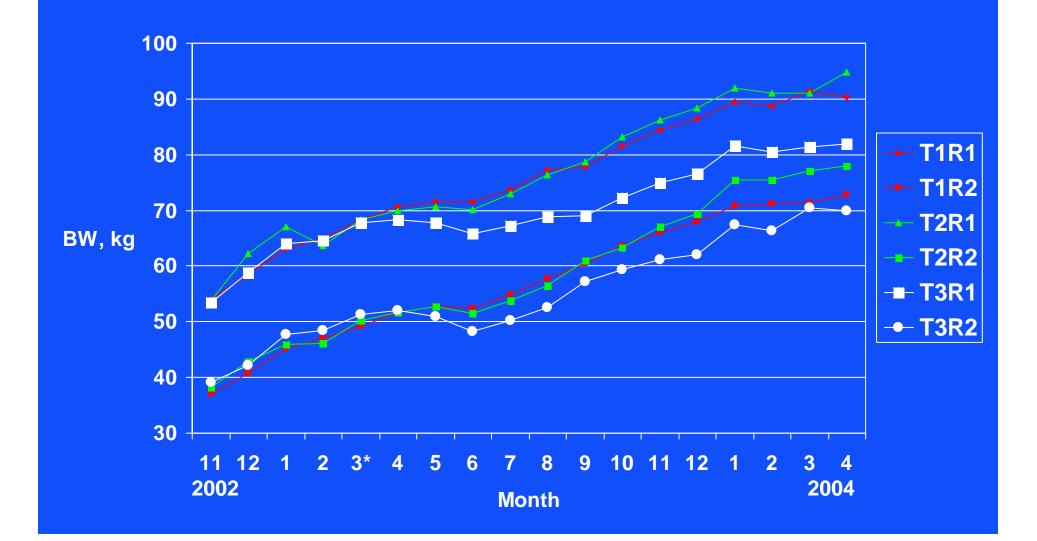
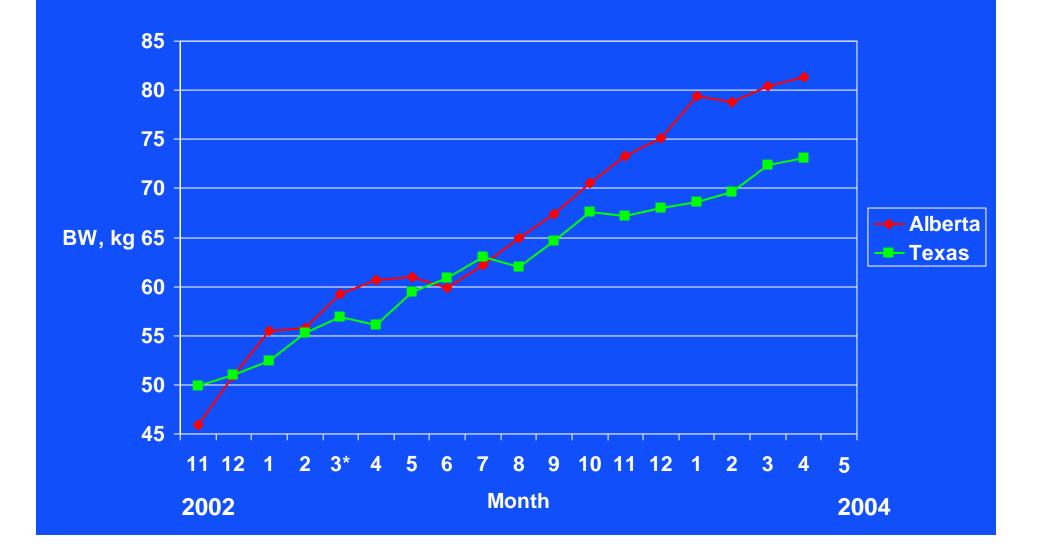




Figure 1. Five fleece components by which alpacas were shorn and tested

Figure 2. Average weight versus month for alpacas on three treatments in Alberta

Figure 3. Average weight versus month for alpacas on three treatments in Alberta


Figure 4. Average weight versus month for alpacas on three treatments in Texas

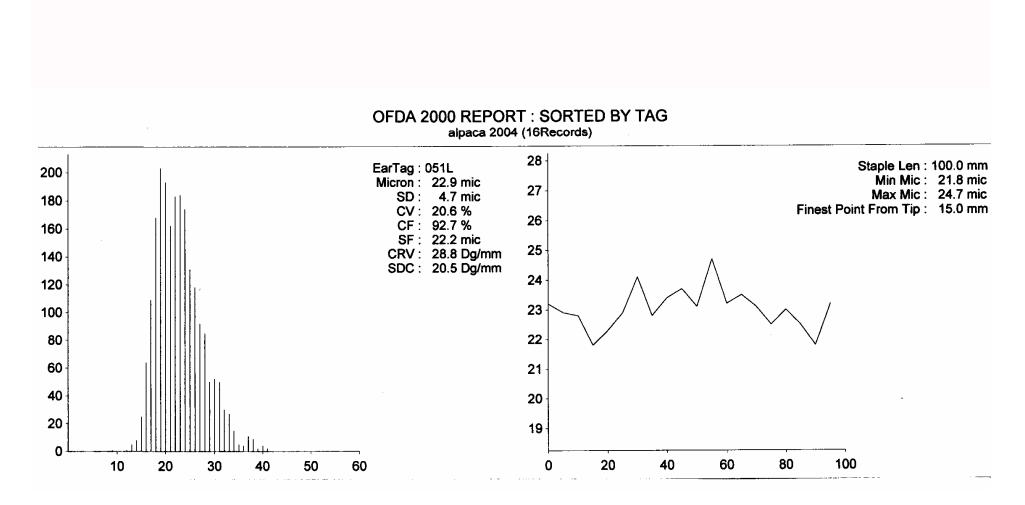


Figure 5. Average weight versus month for alpacas on three treatments in Texas

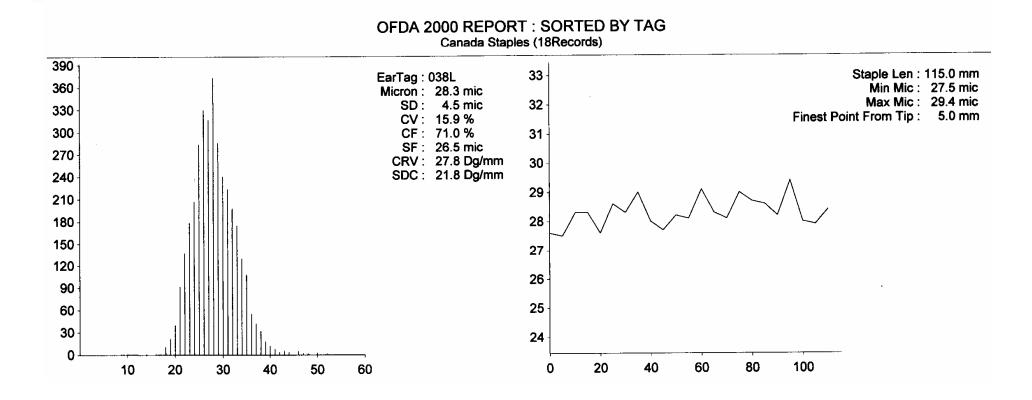

Figure 6. Average weight of alpacas in Alberta and Texas

Figure 7. Histogram and typical staple profile for Alberta alpaca

Figure 8. Histogram and typical staple profile for Texas alpaca

